
1

 RANDOM FORESTS

 Leo Breiman
Statistics Department

 University of California
 Berkeley, CA 94720

 September 1999

 Abstract

Random forests are a combination of tree predictors
such that each tree depends on the values of a
random vector sampled independently and with the
same distribution for all trees in the forest. The
generalization error for forests converges a.s. to a
limit as the number of trees in the forest becomes
large. The generalization error of a forest of tree
classifiers depends on the strength of the individual
trees in the forest and the correlation between them.
Using a random selection of features to split each
node yields error rates that compare favorably to
Adaboost (Freund and Schapire[1996]), but are more
robust with respect to noise. Internal estimates
monitor error, strength, and correlation and these are
used to show the response to increasing the number
of features used in the splitting. Internal estimates
are also used to measure variable importance. These
ideas are also applicable to regression.

2

1. Random Forests

1.1 Introduction

Significant improvements in classification accuracy have resulted from
growing an ensemble of trees and letting them vote for the most popular
class. In order to grow these ensembles, often random vectors are generated
that govern the growth of each tree in the ensemble. An early example is
bagging (Breiman [1996]), where to grow each tree a random selection
(without replacement) is made from the examples in the training set.

Another example is random split selection (Dietterich [1998]) where at each
node the split is selected at random from among the K best splits. Breiman
[1999] generates new training sets by randomizing the outputs in the original
training set. Another approach is to select the training set from a random set
of weights on the examples in the training set. Ho [1998] has written a
number of papers on "the random subspace" method which does a random
selection of a subset of features to use to grow each tree.

In an important paper on written character recognition, Amit and Geman
[1997] define a large number of geometric features and search over a random
selection of these for the best split at each node. This latter paper has been
influential in my thinking.

The common element in all of these procedures is that for the kth tree, a
random vector Θk is generated, independent of the past random vectors
Θ1, ... ,Θk−1 but with the same distribution; and a tree is grown using the
training set and Θk , resulting in a classifier h(x,Θk) where x is an input
vector. For instance, in bagging the random vector Θ is generated as the
counts in N boxes resulting from N darts thrown at random at the boxes,
where N is number of examples in the training set. In random split selection
Θ consists of a number of independent random integers between 1 and K.
The nature and dimensionality of Θ depends on its use in tree construction.

After a large number of trees is generated, they vote for the most popular
class. We call these procedures random forests.

Definition 1.1 A random forest is a classifier consisting of a collection of tree-
structured classifiers {h(x,Θk), k=1, ...} where the {Θk} are independent
identically distributed random vectors and each tree casts a unit vote for the
most popular class at input x .

3

1.2 Outline of Paper

Section 2 gives some theoretical background for random forests. Use of the
Strong Law of Large Numbers shows that they always converge so that
overfitting is not a problem. We give a simplified and extended version of
the Amit and Geman [1997] analysis to show that the accuracy of a random
forest depends on the strength of the individual tree classifiers and a measure
of the dependence between them (see Section 2 for definitions).

Section 3 introduces forests using the random selection of features at each
node to determine the split. An important question is how many features
to select at each node. For guidance, internal estimates of the generalization
error, classifier strength and dependence are computed. These are called out-
of-bag estimates and are reviewed in Section 4. Sections 5 and 6 give
empirical results for two different forms of random features. The first uses
random selection from the original inputs; the second uses random linear
combinations of inputs. The results compare favorably to Adaboost.

The results turn out to be insensitive to the number of features selected to
split each node. Usually, selecting one or two features gives near optimum
results. To explore this and relate it to strength and correlation, an empirical
study is carried out in Section 7.

Adaboost has no random elements and grows an ensemble of trees by
successive reweightings of the training set where the current weights depend
on the past history of the ensemble formation. But just as a deterministic
random number generator can give a good imitation of randomness, my
belief is that in its later stages Adaboost is emulating a random forest.
Evidence for this conjecture is given in Section 8.

Important recent problems, i.e.. medical diagnosis and document retrieval ,
often have the property that there are many input variables, often in the
hundreds or thousands, with each one containing only a small amount of
information. A single tree classifier will then have accuracy only slightly
better than a random choice of class. But combining trees grown using
random features can produce improved accuracy. In Section 9 we experiment
on a simulated data set with 1,000 input variables, 1,000 examples in the
training set and a 4,000 example test set. Accuracy comparable to the Bayes
rate is achieved.

In many applications, understanding of the mechanism of the random forest
"black box" is needed. Section 10 makes a start on this by computing internal
estimates of variable importance and binding these together by reuse runs.

Section 11 looks at random forests for regression. A bound for the mean
squared generalization error is derived that shows that the decrease in error

4

from the individual trees in the forest depends on the correlation between
residuals and the mean squared error of the individual trees. Empirical
results for regression are in Section 12. Concluding remarks are given in
Section 13.

2 Characterizing the Accuracy of Random Forests

2.1 Random Forests Converge

Given an ensemble of classifiers h1(x),h2(x), ... ,hK (x) , and with the training set
drawn at random from the distribution of the random vector Y,X, define the
margin function as

mg(X,Y) = avk I(hk (X)=Y)−max j ≠Y avk I(hk (X)= j) .

where I(•) is the indicator function. The margin measures the extent to
which the average number of votes at X,Y for the right class exceeds the
average vote for any other class. The larger the margin, the more confidence
in the classification. The generalization error is given by

PE* = PX,Y (mg(X,Y) < 0)

where the subscripts X,Y indicate that the probability is over the X,Y space.

In random forests, hk (X) = h(X,Θk) . For a large number of trees, it follows
from the Strong Law of Large Numbers and the tree structure that:

Theorem 1.2 As the number of trees increases, for almost surely all sequences
Θ1 , . . . PE* converges to

PX,Y (PΘ(h(X,Θ)=Y)−max j≠Y PΘ(h(X,Θ)= j) < 0) (1)

Proof: see Appendix I.

This result explains why random forests do not overfit as more trees are
added, but produce a limiting value of the generalization error.

2.2 Strength and Correlation

For random forests, an upper bound can be derived for the generalization
error in terms of two parameters that are measures of how accurate the
individual classifiers are and of the dependence between them. The interplay
between these two gives the foundation for understanding the workings of
random forests. We build on the analysis in Amit and Geman [1997].

5

Definition 2.1 The margin function for a random forest is

 mr(X,Y) = PΘ(h(X,Θ)=Y)−max j≠Y PΘ(h(X,Θ)= j) (2)

and the strength of the set of classifiers {h(x,Θ)} is

 s=E
X,Y

mr(X,Y) (3)

Assuming s ≥ 0 , Chebychev’s inequality gives

 PE* ≤ var(mr)/s2 (4)

A more revealing expression for the variance of mr is derived in the
following: Let

ĵ (X,Y)=arg max j≠Y PΘ(h(X,Θ)= j)

so

mr(X,Y) = PΘ(h(X,Θ)=Y)−PΘ(h(X,Θ)= ĵ (X,Y))

 = EΘ[I(h(X,Θ)=Y)−I(h(X,Θ)= ĵ (X,Y))].

Definition 2.2 The raw margin function is

rmg(Θ,X,Y)= I(h(X,Θ)=Y)−I(h(X,Θ)= ĵ (X,Y)).

Thus, mr(X,Y) is the expectation of rmg(Θ,X,Y) with respect to Θ . For any
function f the identity

[EΘ f (Θ)]2 = EΘ,Θ' f (Θ) f (Θ')

holds where Θ,Θ' are independent with the same distribution, implying that

mr(X,Y)2 = EΘ,Θ'rmg(Θ,X,Y)rmg(Θ' ,X,Y) (5)

Using (5) gives

6

 var(mr)=EΘ,Θ' (covX,Y rmg(Θ,X,Y)rmg(Θ' ,X,Y))

 = EΘ,Θ' (ρ(Θ,Θ')sd(Θ)sd(Θ')) (6)

where ρ(Θ,Θ') is the correlation between rmg(Θ,X,Y)and rmg(Θ' ,X,Y) holding
Θ,Θ' fixed and sd(Θ) is the standard deviation of rmg(Θ,X,Y) holding Θ
fixed. Then,

var(mr) = ρ (EΘsd(Θ))2 (7)
 ≤ ρEΘ var(Θ)

where ρ is the mean value of the correlation; that is,

 ρ = EΘ,Θ' (ρ(Θ,Θ')sd(Θ)sd(Θ'))/ EΘ,Θ' (sd(Θ)sd(Θ'))

 Write

EΘ var(Θ) ≤ EΘ(EX,Yrmg(Θ,X,Y))2 −s2

 ≤ 1− s2 . (8)

Putting (4), (7), and (8) together yields:

Theorem 2.3 An upper bound for the generalization error is given by

PE* ≤ ρ (1−s2)/ s2

Although the bound is likely to be loose, it fulfills the same suggestive
function for random forests as VC-type bounds do for other types of
classifiers. It shows that the two ingredients involved in the generalization
error for random forests are the strength of the individual classifiers in the
forest, and the correlation between them in terms of the raw margin
functions. The c/s2 ratio is the correlation divided by the square of the
strength. In understanding the functioning of random forests, this ratio will
be a helpful guide--the smaller it is, the better.

Definition 2.4 The c/s2 ratio for a random forest is defined as

c / s2 = ρ / s
2

7

There are simplifications in the two class situation. The margin function is

mr(X,Y)=2PΘ(h(X,Θ)=Y) −1

The requirement that the strength is positive (see (4)) becomes similar to the

familiar weak learning condition EX,Y PΘ (h(X, Θ) = Y) >. 5 . The raw margin
function is 2I(h(X,Θ)=Y) −1 and the correlation ρ is between I(h(X,Θ)=Y) and
I(h(X,Θ')=Y) . In particular, if the values for Y are taken to be +1 and -1, then

ρ =EΘ,Θ' [ρ(h(⋅,Θ),h(⋅,Θ')]

so that ρ is the correlation between two different members of the forest
averaged over the Θ ,Θ ' distribution.

For more than two classes, the measure of strength defined in (3) depends on
the forest as well as the individual trees since it is the forest that determines
ĵ (X, Y) . Another approach is possible. Write

PE* = PX,Y (PΘ(h(X,Θ)=Y)−max j≠Y PΘ(h(X,Θ)= j)<0)

 ≤ PX,Y (PΘ(h(X,Θ)=Y)−PΘ(h(X,Θ)= j)<0)
j

∑ .

Define

sj =EX,Y (PΘ(h(X,Θ)=Y)−PΘ(h(X,Θ)= j))

to be the strength of the set of classifiers {h(x,Θ)} relative to class j. Note that
this definition of strength does not depend on the forest. Using Chebyshev's
inequality, assuming all sj>0 leads to

 PE*≤ var(
j

∑ PΘ(h(X,Θ)=Y)−PΘ(h(X,Θ)= j))/sj
2 (9)

and using identities similar to those used in deriving (7), the variances in (9)
can be expressed in terms of average correlations. I did not use estimates of
the quantities in (9) in our empirical study but think they would be
interesting in a multiple class problem.

3. Using Random Features

Some random forests reported in the literature have consistently lower
generalization error than others. For instance, random split selection
(Dieterrich [1998]) does better than bagging. Breiman's introduction of
random noise into the outputs (Breiman [1998c]) also does better. But none of

8

these three forests do as well as Adaboost (Freund and Schapire [1996]) or
other algorithms that work by adaptive reweighting (arcing) of the training
set (see Breiman [1998b], Dieterrich [1998], Bauer and Kohavi [1999]).

To improve accuracy, the randomness injected has to minimize the
correlation ρ while maintaining strength. The forests studied here consist of
using randomly selected inputs or combinations of inputs at each node to
grow each tree. The resulting forests give accuracy that compare favorably
with Adaboost. This class of procedures has desirable characteristics:

i) Its accuracy is as good as Adaboost and sometimes better.
ii) It's relatively robust to outliers and noise.
iii) It's faster than bagging or boosting.
iv) It gives useful internal estimates of error, strength, correlation

and variable importance.
v) It's simple and easily parallelized.

Amit and Geman [1997] grew shallow trees for handwritten character
recognition using random selection from a large number of geometrically
defined features to define the split at each node. Although my
implementation is different and not problem specific, it was their work that
provided the start for my ideas

3.1 Using Out-Of-Bag Estimates to Monitor Error, Strength, and Correlation

In my experiments with random forests, bagging is used in tandem with
random feature selection. Each new training set is drawn, with replacement,
from the original training set. Then a tree is grown on the new training set
using random feature selection. The trees grown are not pruned.

There are two reasons for using bagging. The first is that the use of bagging
seems to enhance accuracy when random features are used. The second is
that bagging can be used to give ongoing estimates of the generalization error
(PE*) of the combined ensemble of trees, as well as estimates for the strength
and correlation. These estimates are done out-of-bag, which is explained as
follows.

Assume a method for constructing a classifier from any training set. Given a
specific training set T, form bootstrap training sets Tk, construct classifiers
h(x, Tk) and let these vote to form the bagged predictor. For each y,x in the
training set, aggregate the votes only over those classifiers for which Tk does
not containing y,x. Call this the out-of-bag classifier. Then the out-of-bag
estimate for the generalization error is the error rate of the out-of-bag
classifier on the training set.

9

Tibshirani [1996] and Wolpert and Macready [1996], proposed using out-of-bag
estimates as an ingredient in estimates of generalization error. Wolpert and
Macready worked on regression type problems and proposed a number of
methods for estimating the generalization error of bagged predictors.
Tibshirani used out-of-bag estimates of variance to estimate generalization
error for arbitrary classifiers. The study of error estimates for bagged classifiers
in Breiman [1996b], gives empirical evidence to show that the out-of-bag
estimate is as accurate as using a test set of the same size as the training set.
Therefore, using the out-of-bag error estimate removes the need for a set
aside test set.

In each bootstrap training set, about one-third of the instances are left out.
Therefore, the out-of-bag estimates are based on combining only about one-
third as many classifiers as in the ongoing main combination. Since the
error rate decreases as the number of combinations increases, the out-of-bag
estimates will tend to overestimate the current error rate. To get unbiased
out-of-bag estimates, it is necessary to run past the point where the test set
error converges. But unlike cross-validation, where bias is present but its
extent unknown, the out-of-bag estimates are unbiased.

Strength and correlation can also be estimated using out-of-bag methods.
This gives internal estimates that are helpful in understanding classification
accuracy and how to improve it. The details are given in Appendix II.
Another application is to the measures of variable importance (see Section
10).

4.Random Forests Using Random Input Selection

The simplest random forest with random features is formed by selecting at
random, at each node, a small group of input variables to split on. Grow the
tree using CART methodology to maximum size and do not prune. Denote
this procedure by Forest-RI. The size F of the group is fixed. Two values of F
were tried. The first used only one randomly selected variable, i.e., F=1. The
second took F to be the first integer less than log2M+1, where M is the
number of inputs.

My experiments use 13 smaller sized data sets from the UCI repository, 3
larger sets separated into training and test sets and 4 synthetic data sets. The
first 10 sets were selected because I had used them in past research. Table 1
gives a brief summary.

10

Table 1 Data Set Summary

Data Set Train Size Test Size Inputs Classes

glass 214 -- 9 6
breast cancer 699 -- 9 2
diabetes 768 -- 8 2
sonar 208 -- 60 2
vowel 990 -- 10 11
ionosphere 351 -- 34 2
vehicle 846 -- 18 4
soybean 685 -- 35 19
German credit 1000 ` -- 24 2
image 2310 -- 19 7
ecoli 336 -- 7 8
votes 435 -- 16 2
liver 345 -- 6 2

letters 15000 5000 16 26
sat-images 4435 2000 36 6
zip-code 7291 2007 256 10

waveform 300 3000 21 3
twonorm 300 3000 20 2
threenorm 300 3000 20 2
ringnorm 300 3000 20 2

On each of the 13 smaller sized data sets, the following procedure was used: a
random 10% of the data was set aside. On the remaining data, random forest
was run twice, growing and combining 100 trees--once with F=1, and the
second time with F=int(log2M+1). The set aside 10% was then put down each
forest to get a test set error for both. The test set error selected corresponded to
the lower value of the out-of-bag estimate in the two runs. This was repeated
100 times and the test set errors averaged. The same procedure was followed
for the Adaboost runs which are based on combining 50 trees.

The use for 100 trees in random forests and 50 for Adaboost comes from two
sources. The out-of-bag estimates are based on only about a third as many
trees as are in the forest. To get reliable estimates I opted for 100 trees. The
second consideration is that growing random forests is many times faster
than growing the trees based on all inputs needed in Adaboost. Growing the
100 trees in random forests was considerably quicker than the 50 trees for
Adaboost.

11

In the runs on the larger data sets, the random forest results for the first two
data sets were based on combining 100 trees; the zip-code procedure combined
200. For Adaboost, 50 trees were combined for the first three data sets and 100
for zip-code. The synthetic data was described in Breiman [1996] and also
used in Schapire et al [1997]. There were 50 runs. In each run, a new training
set of size 300 and test set of size 3000 were generated. In random forests 100
trees were combined in each run--50 in Adaboost. The results of these runs
are given in Table 2.

The second column are the results selected from the two group sizes by
means of lowest out-of-bag error. The third column is the test set error using
just one random feature to grow the trees. The fourth column contains the
out-of-bag estimates of the generalization error of the individual trees in the
forest computed for the best setting (single or selection). This estimate is
computed by using the left-out instances as a test set in each tree grown and
averaging the result over all trees in the forest.

 Table 2 Test Set Errors (%)

Data Set Adaboost Forest-RI
 Selection Single Input One Tree

glass 22.0 20.6 21.2 36.9
breast cancer 3.2 2.9 2.7 6.3
diabetes 26.6 24.2 24.3 33.1
sonar 15.6 15.9 18.0 31.7
vowel 4.1 3.4 3.3 30.4
ionosphere 6.4 7.1 7.5 12.7
vehicle 23.2 25.8 26.4 33.1
German credit 23.5 24.4 26.2 33.3
image 1.6 2.1 2.7 6.4
ecoli 14.8 12.8 13.0 24.5
votes 4.8 4.1 4.6 7.4
liver 30.7 25.1 24.7 40.6

letters 3.4 3.5 4.7 19.8
sat-images 8.8 8.6 10.5 17.2
zip-code 6.2 6.3 7.8 20.6

waveform 17.8 17.2 17.3 34.0
twonorm 4.9 3.9 3.9 24.7
threenorm 18.8 17.5 17.5 38.4
ringnorm 6.9 4.9 4.9 25.7

The error rates using random input selection compare favorably with
Adaboost. The comparison might be even more favorable if the search is over

12

more values of F instead of the preset two. But the procedure is not overly
sensitive to the value of F. The average absolute difference between the error
rate using F=1 and the higher value of F is less than 1%. The difference is
most pronounced on the three large data sets.

The single variable test set results were included because in some of the data
sets, using a single random input variable did better than using several. In
the others, results were only slightly better than use of a single variable. It
was surprising that using a single randomly chosen input variable to split on
at each node could produce good accuracy.

Random input selection can be much faster than either Adaboost or Bagging.
A simple analysis shows that the ratio of R2I compute time to the compute
time of unpruned tree construction using all variables is F*log2(N)/ M where
F is the number of variables used in Forest-RI, N is the number of instances,
and M the number of input variables. For zip-code data, using F=1, the ratio
is .025, implying that Forest-RI is 40 times faster. An empirical check
confirmed this difference. A Forest-RI run (F=1) on the zip-code data takes 4.0
minutes on a 250 Mhz Macintosh to generate 100 trees compared to almost
three hours for Adaboost. For data sets with many variables, the compute
time difference may be significant.

5. Random Forests Using Linear Combinations of Inputs

If there are only a few inputs, say M, taking F an appreciable fraction of M
might lead an increase in strength but higher correlation. Another approach
consists of defining more features by taking random linear combinations of a
number of the input variables. That is, a feature is generated by specifying L,
the number of variables to be combined. At a given node, L variables are
randomly selected and added together with coefficients that are uniform
random numbers on [-1,1]. F linear combinations are generated, and then a
search is made over these for the best split. This procedure is called Forest-
RC .

We use L=3 and F=2, 8 with the choice for F being decided on by the out-of-
bag estimate. We selected L=3 because with O(M3) different combinations of
the input variables, larger values of F should not cause much of a rise in
correlation while increasing strength. If the input variables in a data set are
incommensurable, they are normalized by subtracting means and dividing by
standard deviations, where the means and standard deviations are
determined from the training set. The test set results are given in Table 3
where the third column contains the results for F=2. The fourth column
contains the results for individual trees computed as for Table 2.

13

`` Table 3 Test Set Errors (%)

 Data Set Adaboost Forest-RC
 Selection Two Features One Tree

glass 22.0 24.4 23.5 42.4
breast cancer 3.2 3.1 2.9 5.8
diabetes 26.6 23.0 23.1 32.1
sonar 15.6 13.6 13.8 31.7
vowel 4.1 3.3 3.3 30.4
ionosphere 6.4 5.5 5.7 14.2
vehicle 23.2 23.1 22.8 39.1
German credit 23.5 22.8 23.8 32.6
image 1.6 1.6 1.8 6.0
ecoli 14.8 12.9 12.4 25.3
votes 4.8 4.1 4.0 8.6
liver 30.7 27.3 27.2 40.3

letters 3.4 3.4 4.1 23.8
sat-images 8.8 9.1 10.2 17.3
zip-code 6.2 6.2 7.2 22.7

waveform 17.8 16.0 16.1 33.2
twonorm 4.9 3.8 3.9 20.9
threenorm 18.8 16.8 16.9 34.8
ringnorm 6.9 4.8 4.6 24.6

Except for the three larger data sets, use of F=8 is superflous; F=2 achieves
close to the minimum. On the larger data sets, F=8 gives better results.
Forest-RC does exceptionally well on the synthetic data sets. Overall, it
compares more favorably to Adaboost than Forest-RI.

In Tables 2 and 3 there are some entries for which the selected entry is less
than the one input value or with Forest-RC, less than the two-feature value.
The reason this happens is that when the error rates corresponding to the two
values of F are close together, then the out-of-bag estimates will select a value
of F almost at random.

A small investigation was carried out to see if performance on the three
larger data sets could be improved. Based on the runs with the satellite data
in Section 6, we conjectured that the strength keeps rising in the larger data
sets while the correlation reaches an asymptote more quickly. Therefore we
did some runs with F=100 on the larger data sets using 100, 100 and 200 trees
in the three forests respectively. On the satellite data, the error dropped to
8.5%, on the letters data to 3.0%, but the zip-code test set error did not
decrease. Acting on an informed hunch, I tried Forest-RI with F=25. The zip-

14

code test set error dropped to 5.8%. These are the lowest test set errors so far
achieved on these three data sets by tree ensembles.

5.1 Categorical Variables

Some or all of the input variables may be categoricals and since we want to
define additive combinations of variables, we need to define how categoricals
will be treated so they can be combined with numerical variables. My
approach is that each time a categorical variable is selected to split on at a
node, to select a random subset of the categories of the variable, and define a
substitute variable that is one when the categorical value of the variable is in
the subset and zero outside.

Since a categorical variable with I values can be coded into I-1 dummy 0-1
variables, we make the variable I-1 times as probable as a numeric variable to
be selected in node splitting. When many of the variables are categorical,
using a low value of F results in low correlation, but also low strength. F
must be increased to about two-three times int(log2M+1) to get enough
strength to provide good test set accuracy.

For instance, on the DNA data set having 60 four-valued categorical values,
2,000 examples in the training set and 1,186 in the test set, using Forest-RI
with F=20 gave a test set error rate of 3.6% (4.2% for Adaboost). The soybean
data has 685 examples, 35 variables, 19 classes, and 15 categorical variables.
Using Forest-RI with F=12 gives a test set error of 5.3% (5.8% for Adaboost).
Using Forest-RC with combinations of 3 and F=8 gives an error of 5.5%.

One advantage of this approach is that it gets around the difficulty of what to
do with categoricals that have many values. In the two-class problem, this
can be avoided by using the device proposed in Breiman et al [1985] which
reduces the search for the best categorical split to an O(I) computation. For
more classes, the search for the best categorical split is an O(2I-1) computation.
In the random forest implementation, the computation for any categorical
variable involves only the selection of a random subset of the categories.

 6. Empirical Results on Strength and Correlation

The purpose of this section is to look at the effect of strength and correlation
on the generalization error. Another aspect that we wanted to get more
understanding of was the lack of sensitivity in the generalization error to the
group size F. To conduct an empirical study of the effects of strength and
correlation in a variety of data sets, out-of-bag estimates of the strength and
correlation, as described in Section 3.1, were used.

We begin by running Forest-RI on the sonar data (60 inputs, 208 examples)
using from 1 to 50 inputs. In each iteration, 10% of the data was split off as a

15

test set. Then F, the number of random inputs selected at each node, was
varied from 1 to 50. For each value of F, 100 trees were grown to form a
random forest and the terminal values of test set error, strength, correlation,
etc. recorded. Eighty iterations were done, each time removing a random 10%
of the data for use as a test set, and all results averaged over the 80 repetitions.
Altogether, 400,000 trees were grown in this experiment.

The top graph of Figure 1, plots the values of strength and correlation vs. F.
The result is fascinating. Past about F=4 the strength remains constant;
adding more inputs does not help. But the correlation continues to increase.
The second graph plots the test set errors and the out-of-bag estimates of the
generalization error against F. The out-of-bag estimates are more stable. Both
show the same behavior--a small drop from F=1 out to F about 4-8, and then a
general, gradual increase. This increase in error tallies with the beginning of
the constancy region for the strength.

(Figure 1 about here)

Figure 2 has plots for similar runs on the breast data set where features
consisting of random combinations of three inputs are used. The number of
these features was varied from 1 to 25. Again, the correlation shows a slow
rise, while the strength stays virtually constant, so that the minimum error is
at F=1. The surprise in these two figures is the relative constancy of the
strength. Since the correlations are slowly but steadily increasing, the lowest
error occurs when only a few inputs or features are used.

(Figure 2 about here)

Since the larger data sets seemed to have a different behavior than the
smaller, we ran a similar experiment on the satellite data set. The number of
features, each consisting of a random sum of two inputs, was varied from 1 to
25, and for each, 100 classifiers were combined. The results are shown in
Figure 3. The results differ from those on the smaller data sets. Both the
correlation and strength show a small but steady increase. The error rates
show a slight decrease. We conjecture that with larger and more complex
data sets, the strength continues to increase longer before it plateaus out.

(Figure 3 about here)

Our results indicate that better (lower generalization error) random forests
have lower correlation between classifiers and higher strength. The
randomness used in tree construction has to aim for low correlation ρ while
maintaining reasonable strength. This conclusion has been hinted at in
previous work. Dietterich [1998] has measures of dispersion of an ensemble
and notes that more accurate ensembles have larger dispersion. Freund
[personal communication] believes that one reason why Adaboost works so

16

well is that at each step it tries to decouple the next classifier from the current
one. Amit et al [1999] give an analysis to show that the Adaboost algorithm is
aimed at keeping the covariance between classifiers small.

 7. Conjecture: Adaboost is a Random Forest

Various classifiers can be modified to use both a training set and a set of
weights on the training set. Consider the following random forest: a large
collection of K different sets of non-negative sum-one weights on the training
set is defined. Denote these weights by w(1),w(2), ... w(K) . Corresponding to
these weights are probabilities p(1),p(2), ... p(K) whose sum is one. Draw from
the integers 1, ..., K according to these probabilities. The outcome is Θ . If
Θ=k grow the classifier h(x,Θ) using the training set with weights w(k).

In its original version, Adaboost (Freund and Schapire [1996]) is a
deterministic algorithm that selects the weights on the training set for input
to the next classifier based on the misclassifications in the previous classifiers.
In our experiment, random forests were produced as follows: Adaboost was
run 75 times on a data set producing sets of non-negative sum-one weights
w(1),w(2), ... w(50) (the first 25 were discarded). The probability for the kth set
of weights is set proportional to Q(wk)=log[(1−error(k))/error(k)] where error(k)
is the w(k) weighted training set error of the kth classifier. Then the forest is
run 250 times.

This was repeated 100 times on a few data sets, each time leaving out 10% as a
test set and then averaging the test set errors. On each data set, the Adaboost
error rate was very close to the random forest error rate. A typical result is on
the Wisconsin Breast Cancer data where Adaboost produced an average of
2.91% error and the random forest produced 2.94%.

In the Adaboost algorithm, w(k+1)=φ(w k()) where φ is a function determined
by the base classifier. Denote the kth classifier by h(x,wk). The vote of the kth

classifier is weighted by Q(wk) so the normalized vote for class j at x equals

I(h(x
k
∑ ,wk)= j)Q(wk)/ Q(wk)

k
∑ . (10)

For any function f defined on the weight space, define the operator
Tf (w)= f (φ(w)) . We conjecture that T is ergodic with invariant measure
π(dw) . Then (10) will converge to EQπ[I(h(x,w)= j)] where the distribution

Qπ(dw)=Q(w)π(dw)/ Q(v)π(dv)∫ . If this conjecture is true, then Adaboost is
equivalent to a random forest where the weights on the training set are
selected at random from the distribution Qπ .

17

Its truth would also explain why Adaboost does not overfit as more trees are
added to the ensemble--an experimental fact that has been puzzling. There
is some experimental evidence that Adaboost may overfit if run thousands of
times (Grove and Schuurmans [1998]), but these runs were done using a very
simple base classifier and may not carry over to the use of trees as the base
classifiers. My experience running Adaboost out to 1,000 trees on a number
of data sets is that the test set error converges to an asymptotic value.

The truth of this conjecture does not solve the problem of how Adaboost
selects the favorable distributions on the weight space that it does. Note that
the distribution of the weights will depend on the training set. In the usual
random forest, the distribution of the random vectors does not depend on the
training set.

 8. The Effects of Output Noise

Dietterich [1998] showed that when a fraction of the output labels in the
training set are randomly altered, the accuracy of Adaboost degenerates, while
bagging and random split selection are more immune to the noise. Since
some noise in the outputs is often present, robustness with respect to noise is
a desirable property. Following Dietterich [1998] the following experiment
was done which changed about one in twenty class labels (injecting 5% noise).

For each data set in the experiment, 10% at random is split off as a test set.
Two runs are made on the remaining training set. The first run is on the
training set as is. The second run is on a noisy version of the training set.
The noisy version is gotten by changing, at random, 5% of the class labels into
an alternate class label chosen uniformly from the other labels.

This is repeated 50 times using Adaboost (deterministic version), Forest-RI
and Forest-RC. The test set results are averaged over the 50 repetitions and
the percent increase due to the noise computed. In both random forests, we
used the number of features giving the lowest test set error in the Section 5
and 6 experiments. Because of the lengths of the runs, only the 9 smallest
data sets are used. Table 4 gives the increases in error rates due to the noise.

Table 4 Increases in Error Rates Due to Noise (%)

Data Set Adaboost Forest-RI Forest-RC

glass 1.6 .4 -.4
breast cancer 43.2 1.8 11.1
diabetes 6.8 1.7 2.8
sonar 15.1 -6.6 4.2
ionosphere 27.7 3.8 5.7
soybean 26.9 3.2 8.5

18

ecoli 7.5 7.9 7.8
votes 48.9 6.3 4.6
liver 10.3 -.2 4.8

Adaboost deteriorates markedly with 5% noise, while the random forest
procedures generally show small changes. The effect on Adaboost is curiously
data set dependent, with the two multiclass data sets, glass and ecoli, along
with diabetes, least effected by the noise. The Adaboost algorithm iteratively
increases the weights on the instances most recently misclassified. Instances
having incorrect class labels will persist in being misclassified. Then,
Adaboost will concentrate increasing weight on these noisy instances and
become warped. The random forest procedures do not concentrate weight on
any subset of the instances and the noise effect is smaller.

9 Data With Many Weak Inputs

Data sets with many weak inputs are becoming more common, i.e. in
medical diagnosis, document retrieval, etc. The common characteristics is no
single input or small group of inputs can distinguish between the classes.
This type of data is difficult for the usual classifiers--neural nets and trees.

To see if there is a possibility that Forest-RI methods can work, the following
10 class, 1,000 binary input data, was generated: (rnd is a uniform random
number, selected anew each time it appears)

do j=1,10
do k=1,1000
p(j,k)=.2*rnd+.01
end do
end do

do j=1,10
do k=1, nint(400*rnd) !nint=nearest integer
k=nint(1000*rnd)
p(j,k)=p(j,k)+.4*rnd
end do
end do

do n=1,N
j=nint(10*rnd)
do m=1,1000
if (rnd<p(j,m))then
x(m,n)=1
else
x(m,n)=0
end if

19

y(n)=j ! y(n) is the class label of the nth example
end do
end do

This code generates a set of probabilities {p(j,m)} where j is the class label and
m is the input number. Then the inputs for a class j example are a string of M
binary variables with the mth variable having probability p(j,m) of being one.

For the training set, N=1,000. A 4,000 example test set was also constructed
using the same {p(j,k)}. Examination of the code shows that each class has
higher underlying probability at certain locations. But the total over all
classes of these locations is about 2,000, so there is significant overlap.
Assuming one knows all of the {p(j,k)}, the Bayes error rate for the particular
{p(j,m)} computed in our run is 1.0%.

Since the inputs are independent of each other, the Naive Bayes classifier,
which estimates the {p(j,k)} from the training data is supposedly optimal and
has an error rate of 6.2%. This is not an endorsement of Naive Bayes, since it
would be easy to create a dependence between the inputs which would
increase the Naive Bayes error rate. I stayed with this example because the
Bayes error rate and the Naive Bayes error rate are easy to compute.

I started with a run of Forest-RI with F=1. It converged very slowly and by
2,500 iterations, when it was stopped, it had still not converged. The test set
error was 10.7%. The strength was .069 and the correlation .012 with a c/s2
ratio of 2.5. Even though the strength was low, the almost zero correlation
meant that we were adding small increments of accuracy as the iterations
proceeded.

Clearly, what was desired was an increase in strength while keeping the
correlation low. Forest-RI was run again using F=int(log2M+1)=10. The
results were encouraging. It converged after 2,000 iterations. The test set
error was 3.0%. The strength was .22, the correlation .045 and c/s2=.91. Going
with the trend, Forest-RI was run with F=25 and stopped after 2,000 iterations.
The test set error was 2.8%. Strength was .28, correlation .065 and c/s2 = .83.

It's interesting that Forest-RI could produce error rates not far above the Bayes
error rate. The individual classifiers are weak. For F=1, the average tree
error rate is 80%; for F=10, it is 65%; and for F=25, it is 60%. Forests seem to
have the ability to work with very weak classifiers as long as their correlation
is low. A comparison using Adaboost was tried, but I can't get Adaboost to
run on this data because the base classifiers are too weak.

10. Exploring the Random Forest Mechanism

20

A forest of trees is impenetrable as far as simple interpretations of its
mechanism go. In some applications, analysis of medical experiments for
example, it is critical to understand the interaction of variables that is
providing the predictive accuracy. A start on this problem is made by using
internal out-of-bag estimates, and verification by reruns using only selected
variables.

Suppose there are M input variables. After each tree is constructed, the
values of the mth variable in the out-of-bag examples are randomly
permuted and the out-of-bag data is run down the corresponding tree. The
classification given for each xn that is out of bag is saved. This is repeated for
m=1,2, ... , M. At the end of the run, the plurality of out-of-bag class votes
for xn with the mth variable noised up is compared with the true class label of
xn to give a misclassification rate.

The output is the percent increase in misclassification rate as compared to the
out-of-bag rate (with all variables intact). We get these estimates by using a
single run of a forest with 1,000 trees and no test set. The procedure is
illustrated by examples.

In the diabetes data set, using only single variables with F=1, the rise in error
due to the noising of variables is given in Figure 4

 Figure 4
Measure of Variable Importance--Diabetes Data

- 1 0

0

1 0

2 0

3 0

4 0

pe
rc

en
t i

nc
re

as
e

1 2 3 4 5 6 7 8
variable

The second variable appears by far the most important followed by variable 8
and variable 6. Running the random forest in 100 repetitions using only
variable 2 and leaving out 10% each time to measure test set error gave an
error of 29.7%, compared with 23.1% using all variables. But when variable 8
is added, the error falls only to 29.4%. When variable 6 is added to variable 2,
the error falls to 26.4%.

21

The reason that variable 6 seems important, yet is no help once variable 2 is
entered is a characteristic of how dependent variables affect prediction error
in random forests. Say there are two variables x1 and x2 which are identical
and carry significant predictive information. Because each gets picked with
about the same frequency in a random forest, noising each separately will
result in the same increase in error rate. But once x1 is entered as a predictive
variable, using x2 in addition will not produce any decrease in error rate. In
the diabetes data set, the 8th variable carries some of the same information as
the second. So it does not add predictive accuracy when combined with the
second.

The relative magnitudes of rises in error rates are fairly stable with respect to
the input features used. The experiment above was repeated using
combinations of three inputs with F=2. The results are in the following
graph:

Figure 5
Measure of Variable Importance-Diabetes Data

- 1 0

0

1 0

2 0

3 0

pe
rc

en
t i

nc
re

as
e

1 2 3 4 5 6 7 8
variable

Another interesting example is the voting data. This has 435 examples
corresponding to 435 Congressmen and 16 variables reflecting their yes-no
votes on 16 issues. The class variable is Republican or Democrat. To see
which issues were most important, we again ran the noising variables
program generating 1,000 trees. The lowest error rate on the original data was
gotten using single inputs with F=5, so these parameters were used in the
run. The results are graphed below:

22

 Figure 6
 Measure of Variable Importance--Votes Data

- 1 0 0

0

100

200

300

400

pe
rc

en
t i

nc
re

as
e

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6
variables

Variable 4 stands out--the error triples if variable 4 is noised. We reran this
data set using only variable 4. The test set error is 4.3%, about the same as if
all variables were used. The vote on 4 separates Republicans from Democrats
almost as well as the vote on 4 combined with the votes on all other 15 issues.

The approach given in this section is only a beginning. More research will be
necessary to understand how to give a more complete picture.

11. Random Forests for Regression.

Random forests for regression are formed by growing trees depending on a
random vector Θ such that the tree predictor h(x,Θ) takes on numerical
values as opposed to class labels. The output values are numerical and we
assume that the training set is independently drawn from the distribution of
the random vector Y,X . The mean-squared generalization error for any
numerical predictor h(x) is

 EX,Y (Y−h(X))2 (11)

The random forest predictor is formed by taking the average over k of the
trees { h(x,Θk)}. Similarly to the classification case, the following holds:

Theorem 11.1 As the number of trees in the forest goes to infinity, almost
surely,

23

 EX,Y (Y−avkh(X,Θk))2→ EX,Y (Y−EΘh(X,Θ))2 (12)

Proof: see Appendix I.

Denote the right hand side of (12) as PE*(forest)--the generalization error of
the forest. Define the average generalization error of a tree as:

 PE*(tree)= EΘ EX,Y (Y−h(X,Θ))2

Theorem 11.2 Assume that for all Θ , EY = EXh(X,Θ) . Then

PE*(forest) ≤ ρPE*(tree)

where ρ is the weighted correlation between the residuals Y−h(X,Θ) and
Y−h(X,Θ') where Θ,Θ' are independent.

Proof: PE*(forest) = EX,Y [EΘ(Y −h(X,Θ)]2

 = EΘEΘ' EX,Y (Y −h(X,Θ))(Y −h(X,Θ')) (13)

The term on the right in (13) is a covariance and can be written as:

EΘEΘ' (ρ (Θ, Θ')sd (Θ)sd (Θ'))

where sd(Θ) = EX,Y (Y−h(X,Θ))2 . Define the weighted correlation as:

 ρ = EΘEΘ' (ρ (Θ, Θ')sd (Θ)sd (Θ')) / (EΘsd (Θ))
2

(14)

Then

PE*(forest) =ρ (EΘsd(Θ))2 ≤ ρPE*(tree).

Theorem (11.2) pinpoints the requirements for accurate regression forests--
low correlation between residuals and low error trees. The random forest
decreases the average error of the trees employed by the factor ρ . The
randomization employed needs to aim at low correlation.

12 Empirical Results in Regression

24

In regression forests we use random feature selection on top of bagging.
Therefore, we can use the monitoring provided by out-of-bag estimation to
give estimates of PE*(forest), PE*(tree) and ρ . These are derived similarly to
the estimates in classification. Throughout, features formed by a random
linear sum of two inputs are used. We comment later on how many of these
features to use to determine the split at each node. The more features used,
the lower PE*(tree) but the higher ρ . In our empirical study the following
data sets are used:

Table 5 Data Set Summary

Data Set Nr. Inputs #Training #Test
Boston Housing 12 506 10%
Ozone 8 330 10%
Servo 4 167 10%
Abalone 8 4177 25%
Robot Arm 12 15,000 5000
Friedman#1 10 200 2000
Friedman#2 4 200 2000
Friedman#3 4 200 2000

Of these data sets, the Boston Housing, Abalone and Servo are available at the
UCI repository. The Robot Arm data was provided by Michael Jordan. The
last three data sets are synthetic. They originated in Friedman [1991] and are
also described in Breiman [1998]. These are the same data sets used to
compare adaptive bagging to bagging (see Breiman [1999]), except that one
synthetic data set (Peak20), which was found anomalous both by other
researchers and myself, is eliminated.

The first three data sets listed are moderate in size and test set error was
estimated by leaving out a random 10% of the instances, running on the
remaining 90% and using the left-out 10% as a test set. This was repeated 100
times and the test set errors averaged. The abalone data set is larger with 4,177
instances and 8 input variables. It originally came with 25% of the instances
set aside as a test set. We ran this data set leaving out a randomly selected
25% of the instances to use as a test set, repeated this 10 times and averaged.

Table 6 gives the test set mean-squared error for bagging, adaptive
bagging and the random forest. These were all run using 25 features,
each a random linear combination of two randomly selected inputs, to
split each node, each feature a random combination of two inputs. All
runs with all data sets, combined 100 trees. In all data sets, the rule
"don't split if the node size is < 5" was enforced.

25

 Table 6 Mean-Squared Test Set Error

Data Set Bagging Adapt. Bag Forest
Boston Housing 11.4 9.7 10.2
Ozone 17.8 17.8 16.3
Servo x10-2 24.5 25.1 24.6
Abalone 4.9 4.9 4.6
Robot Armx10-2 4.7 2.8 4.2
Friedman #1 6.3 4.1 5.7
Friedman #2x10+3 21.5 21.5 19.6
Friedman #3x10-3 24.8 24.8 21.6

An interesting difference between regression and classification is that the
correlation increases quite slowly as the number of features used increases.
The major effect is the decrease in PE*(tree). Therefore, a relatively large
number of features are required to reduce PE*(tree) and get near optimal test-
set error.

The results shown in Table 6 are mixed. Random forest-random features is
always better than bagging. In data sets for which adaptive bagging gives
sharp decreases in error, the decreases produced by forests are not as
pronounced. In data sets in which adaptive bagging gives no improvements
over bagging, forests produce improvements.

For the same number of inputs combined, over a wide range, the error does
not change much with the number of features. If the number used is too
small, PE*(tree) becomes too large and the error goes up. If the number used
is too large, the correlation goes up and the error again increases. The in-
between range is usually large. In this range, as the number of features goes
up, the correlation increases, but PE*(tree) compensates by decreasing.

Table 7 gives the test set errors, the out-of-bag error estimates, and the OB
estimates for PE*(tree) and the correlation.

Table 7. Error and OB Estimates

Data Set Test Error OB Error PE*(tree) Cor.
Boston Housing 10.2 11.6 26.3 .45
Ozone 16.3 17.6 32.5 .55
Servo x10-2 24.6 27.9 56.4 .56
Abalone 4.6 4.6 8.3 .56

26

Robot Arm x10-2 4.2 3.7 9.1 .41
Friedman #1 5.7 6.3 15.3 .41
Friedman #2x10+3 19.6 20.4 40.7 .51
Friedman #3x10-3 21.6 22.9 48.3 .49

As expected, the OB Error estimates are consistently high. It is low in the
robot arm data, but I believe that this is an artifact caused by separate training
and test sets, where the test set may have a slightly higher error rate than the
training set.

As an experiment, I turned off the bagging and replaced it by randomizing
outputs (Breiman [1998b]). In this procedure, mean-zero Gaussian noise is
added to each of the outputs. The standard deviation of the noise is set equal
to the standard deviation of the outputs. Similar to the bagging experiments,
tree construction was done using 25 features, each a random linear
combination of two randomly selected inputs, to split each node. The results
are given in Table 8.

Table 8 Mean-Squared Test Set Error

Data Set With Bagging With Noise
Boston Housing 10.2 9.1
Ozone 17.8 16.3
Servo x10-2 24.6 23.2
Abalone 4.6 4.7
Robot Arm x10-2 4.2 3.9
Friedman #1 5.7 5.1
Friedman #2x10+3 19.6 20.4
Friedman #3x10-3 21.6 19.8

The error rates on the first two data sets are the lowest to date. Overall,
adding output noise works with random feature selection better than bagging.
This is illustrative of the flexibility of the random forest setting--various
combinations of randomness can be added to see what works the best.

13 Remarks and Conclusions

Random forests are an effective tool in prediction. Because of the Law of
Large Numbers they do not overfit. Injecting the right kind of randomness
makes them accurate classifiers and regressors. Furthermore, the framework
in terms of strength of the individual predictors and their correlations gives
insight into the ability of the random forest to predict. Using out-of-bag
estimation makes concrete the otherwise theoretical values of strength and
correlation.

27

For a while, the conventional thinking was that forests could not compete
with arcing type algorithms in terms of accuracy. Our results dispel this
belief, but lead to interesting questions. Boosting and arcing algorithms have
the ability to reduce bias as well as variance (Schapire et al [1998]). The
adaptive bagging algorithm in regression (Breiman [1999]) was designed to
reduce bias and operates effectively in classification as well as in regression.
But, like arcing, it also changes the training set as it progresses.

Forests give results competitive with boosting and adaptive bagging, yet do
not progressively change the training set. Their accuracy indicates that they
act to reduce bias. The mechanism for this is not obvious. Random forests
may also be viewed as a Bayesian procedure. Although I doubt that this is a
fruitful line of exploration, if it could explain the bias reduction, I might
become more of a Bayesian.

Random inputs and random features produce good results in classification--
less so in regression. The only types of randomness used in this study is
bagging and random features. It may well be that other types of injected
randomness give better results. For instance, one of the referees has
suggested use of random Boolean combinations of features.

An almost obvious question is whether gains in accuracy can be gotten by
combining random features with boosting. For the larger data sets, it seems
that significantly lower error rates are possible. On some runs, we got errors
as low as 5.1% on the zip-code data, 2.2% on the letters data and 7.9% on the
satellite data. The improvement was less on the smaller data sets. More
work is needed on this; but it does suggest that different injections of
randomness can produce better results.

A recent paper (Breiman [2000]) shows that in distribution space for two class
problems, random forests are equivalent to a kernel acting on the true
margin. Arguments are given that randomness (low correlation) enforces the
symmetry of the kernel while strength enhances a desirable skewness at
abrupt curved boundaries. Hopefully, this sheds light on the dual role of
correlation and strength. The theoretical framework given by Kleinberg [2000]
for Stochastic Discrimination may also help understanding.

References

Amit, Y. and Geman, D. [1997] Shape quantization and recognition with
randomized trees, Neural Computation 9, 1545-1588

Amit, Y., Blanchard, G., and Wilder, K. [1999] Multiple Randomized
Classifiers: MRCL Technical Report, Department of Statistics,
University of Chicago

28

Bauer, E. and Kohavi, R. [1999] An Empirical Comparison of Voting
Classification Algorithms, Machine Learning, 36, No. 1/2, 105-139.

Breiman, L. [2000] Some infinity theory for predictor ensembles, Technical
Report 579, Statistics Dept. UCB

Breiman, L. [1999] Using adaptive bagging to debias regressions, Technical
Report 547, Statistics Dept. UCB

Breiman, L. [1998a], Arcing Classifiers, (discussion paper) Annals of Statistics,
26, 801-824

Breiman. L. [1998b] Randomizing Outputs To Increase Prediction Accuracy.
Technical Report 518, May 1, 1998, Statistics Department, UCB (in press
Machine Learning)

Breiman, L. [1996a] Bagging Predictors, Machine Learning, 26, No. 2, 123-140
Breiman, L. [1996b] Out-of-bag estimation,

ftp.stat.berkeley.edu/pub/users/breiman/OOBestimation.ps
Dietterich, T. [1998] An Experimental Comparison of Three Methods for

Constructing Ensembles of Decision Trees: Bagging, Boosting and
Randomization, Machine Learning 1-22

Freund, Y. and Schapire, R. [1996] Experiments with a new boosting
algorithm, Machine Learning: Proceedings of the Thirteenth
International Conference, pp. 148-156

 Grove, A. and Schuurmans, D. [1998]. Boosting in the limit: Maximizing the
margin of learned ensembles. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI-98).

Ho, T.K. [1998] The random subspace method for constructing decision forests,
IEEE Trans. on Pattern Analysis and Machine Intelligence, 20,8, 832-844

Kleinberg, E. [2000] On the algorithmic implementation of stochastic
discrimination, IEEE Trans. on Pattern Analysis and Machine
Intelligence, 22,5 473-490

 Schapire, R. ,Freund Y. Bartlett P. and Lee W. [1998] Boosting the margin: A
new explanation for the effectiveness of voting methods. Annals of
Statistics, 26(5):1651-1686.

Tibshirani, R. [1996] Bias, Variance, and Prediction Error for Classification
Rules, Technical Report, Statistics Department, University of Toronto

Wolpert, D.H. and Macready, W.G. [1997] An Efficient Method to Estimate
Bagging's Generalization Error (in press, Machine Learning)

Appendix I Almost Sure Convergence

Proof of Theorem 1.2

It suffices to show that there is a set of probability zero C on the sequence
space Θ1,Θ2, ... such that outside of C, for all x ,

29

1
N

I(h(Θn
n=1

N
∑ ,x)= j)→PΘ(h(Θ,x)= j).

For a fixed training set and fixed Θ , the set of all x such that h(Θ,x)= j is a
union of hyper-rectangles. For all h(Θ,x) there is only a finite number K of
such unions of hyper-rectangles, denoted by S1, ... SK . Define ϕ (Θ)=k if
{x: h(Θ,x)= j}=Sk . Let Nk be the number of times that ϕ (Θn)=k in the first N
trials. Then

1
N

I(h(Θn
n=1

N
∑ ,x)= j) = 1

N
Nk

k
∑ I(x ∈ Sk)

By the Law of Large Numbers,

 Nk =
1
N

I(
n=1

N
∑ ϕ (Θn)=k)

converges a.s. to PΘ(ϕ (Θ)=k) . Taking unions of all the sets on which
convergence does not occur for some value of k gives a set C of zero
probability such that outside of C,

1
N

I(h(Θn
n=1

N
∑ ,x)= j)→ PΘ(ϕ (Θ)=k)

k
∑ I(x ∈ Sk).

The right hand side is PΘ(h(Θ,x)= j).

Proof of Theorem 9.1 There are a finite set of hyper-rectangles R1, ... RK , such
that if yk is the average of the training sets y-values for all training input
vectors in Rk then h(Θ,x) has one of the values I (x ∈ Sk)yk . The rest of the
proof parallels that of Theorem 1.2.

Appendix II Out-of Bag Estimates for Strength and Correlation

At the end of a combination run, let

Q(x, j)= I(
k
∑ h(x,Θk)= j; (y,x)∉ Tk,B)/ I(

k
∑ (y,x)∉ Tk,B) .

30

Thus, Q(x, j) is the out-of-bag proportion of votes cast at x for class j, and is an
estimate for PΘ(h(x,Θ)= j) . From Definition 2.1 the strength is the expectation
of

PΘ(h(x,Θ)=y)−max j≠y PΘ(h(x,Θ)= j).

Substituting Q(x, j), Q(x,y) for PΘ(h(x,Θ)= j), PΘ(h(x,Θ)=y) in this latter
expression and taking the average over the training set gives the strength
estimate.

From equation (7),

ρ =var(mr)/(EΘsd(Θ))2 .

The variance of mr is

E
X,Y

[PΘ(h(x,Θ)=y)−max j≠y PΘ(h(x,Θ)= j)]2 −s2 (A1)

where s is the strength. Replacing the first term in (A1) by the average over
the training set of

(Q(x,y)−max j≠y Q(x, j))2

and s by the out-of-bag estimate of s gives the estimate of var(mr). The
standard deviation is given by

sd(Θ)=[p1+ p2 +(p1−p2)2]
1
2 (A2)

where

p1 = EX,Y (h(X, Θ) = Y)

p2 = EX,Y (h(X, Θ) = ĵ (X, Y))
.

After the kth classifier is constructed, Q(x, j) is computed, and used to

compute ĵ(x,y) for every example in the training set. Then, let p1 be the
average over all (y,x) in the training set but not in the kth bagged training set

of I(h(x,Θk)=y). Then p2 is the similar average of I(h(x,Θk)= ĵ(x,y)) .

31

Substitute these estimates into (A2) to get an estimate of sd (Θk) . Average

the sd (Θk) over all k to get the final estimate of sd (Θ).

32

00

.. 11

.. 22

.. 33

.. 44

.. 55

.. 66

YY
 VV

aa rr
ii aa

bb ll
ee ss

00 11 00 22 00 33 00 44 00 55 00
nnuummbbeerr oo ff ii nnppuu tt ss

ccoo rr rree ll aa tt ii oonn

ss tt rr eenngg tthh

00

55

11 00

11 55

22 00

22 55

pp ee
rr cc

ee nn
tt

00 11 00 22 00 33 00 44 00 55 00
nnuummbbeerr oo ff ii nnppuu tt ss

OOBB ee rr rroo rr

tt eess tt ssee tt ee rr rroo rr

FF IIGGUURREE 11

EEFFFFEECCTT OOFF NNUUMMBBEERR OOFF IINNPPUUTTSS OONN SSOONNAARR DDAATTAA

CCOORRRREELLAATTIIOONN AANNDD SSTTRREENNGGTTHH

TTEESSTT SSEETT AANNDD OOBB EERRRROORR

33

0

.3

.6

.9

1.2

Y
 V

ar
ia

bl
es

0 5 1 0 1 5 2 0 2 5

number of features

correlation

strength

0

1

2

3

4

5

pe
rc

en
t

0 5 1 0 1 5 2 0 2 5

number of features

OB error

test set error

FIGURE 2

EFFECT OF THE NUMBER OF FEATURES ON THE BREAST DATA SET

CORRELATION AND STRENGTH

TEST SET AND OB ERROR

34

00

.. 22

.. 44

.. 66

.. 88

11

YY
 VV

aa rr
ii aa

bb ll
ee ss

00 55 11 00 11 55 22 00 22 55
nnuummbbeerr oo ff ff eeaa ttuu rreess

ccoo rr rree ll aa tt ii oonn

ss tt rr eenngg tthh

00

33

66

99

11 22

11 55

pp ee
rr cc

ee nn
tt

00 55 11 00 11 55 22 00 22 55
nnuummbbeerr oo ff ff eeaa ttuu rreess

OOBB ee rr rroo rr

tt eess tt ssee tt ee rr rroo rr

FF IIGGUURREE 33

EEFFFFEECCTT OOFF NNUUMMBBEERR OOFF FFEEAATTUURREESS OONN SSAATTEELLLL IITTEE DDAATTAA

CCOORRRREELLAATTIIOONN AANNDD SSTTRREENNGGTTHH

TTEESSTT SSEETT AANNDD OOBB EERRRROORR

35

