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Abstract

Based on a family of splitting criteria for classification trees, meth-
ods of selecting the best categorical splits are studied. They are shown
to be very useful in reducing the computational complexity of the ex-
haustive search method.
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1 Introduction

When constructing a binary classification tree, a naive approach to choose
the split based on a single variable is to search through all the possible
points. A criterion is then used to select the best one. For example, the
Gini criterion is used in Breiman, Friedman, Olshen and Stone (1984) and
the entropy criterion is used in Ciampi, Chang, Hogg and McKinney (1987),
Clark and Pregibon (1992) and Quinlan (1993). Taylor and Silverman (1993)
suggest the mean posterior improvement criterion. Shih (1999) proposes a
weighted sum method which creates a family of splitting criteria.

If the variable is numerical with M distinct values, the procedure has
to check M − 1 possible splits. If the variable is categorical with M el-
ements, then the set of all the possible splits is of size 2M−1 − 1. When
M becomes larger, the procedure will spend more time on finding the best
split, especially for categorical variables. For two-class problem, the search
for the best categorical split can be reduced to M − 1 steps using the Gini
criterion (Breiman et al., 1984). For three or more classes, Mola and Sicil-
iano (1997; 1999) provide algorithms that could reduce the computational
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complexity of searching through several categorical variables, when the Gini
or entropy criterion is used.

In this paper, similar results are obtained for the family of splitting
criteria proposed in Shih (1999). The family is introduced in Section 2. It is
shown in Section 3 that the search can also be reduced to M−1 steps, if any
member of the family is used for two-class problem. A divergence index is
defined in Section 4 and its property is studied. In Section 5, an algorithm
based on the index is given and an example is shown to demonstrate the
computational efficiency of the algorithm. Conclusions are given in Section
6.

2 Family of splitting criteria

Suppose there are J classes in the current node. For every binary split,
denote L and R to be its two subnodes. Let πL and πR be the proportions
that are placed into L and R, respectively. The relative proportion of class
j in the current node is defined as pj while that in the subnode k is defined
as pjk, k ∈ {L,R}. We use p = (p1, . . . , pJ) as the proportion vector in the
current node and pk = (p1k, . . . , pJk), k ∈ {L,R} as the proportion vector
in the subnodes.

Definition 1 (Read and Cressie (1988)) Let u and v be two discrete
probability distributions defined on the (J−1)-dimensional simplex: {π|π =
(π1, π2, . . . , πJ) with πj ≥ 0 and

∑
j πj = 1, where 1 ≤ j ≤ J}. The power

divergence for u and v is

Iλ(u : v) = {λ(λ + 1)}−1
J∑

j=1

uj{(uj/vj)λ − 1}; −1 < λ < ∞,

where the value at λ = 0 is taken to be the continuous limit as λ → 0.
Thus, I0(u : v) =

∑J
j=1 uj log(uj/vj). The value uj{(uj/vj)λ − 1}/λ = 0, if

uj = vj = 0.

Based on the power divergence family, a family of splitting criteria defined
in Shih (1999) is

C(λ) ≡ πLIλ(pL : p) + πRIλ(pR : p), −1 < λ < ∞.

For a given λ value, the best split based on C(λ) is the one that maxi-
mizes C(λ). Shih (1999) shows that the chi-squared criterion (λ = 1) and
the entropy criterion (λ = 0) belong to this family. It also contains the
Freeman-Tukey (λ = −1/2) and the Crssie-Read (λ = 2/3) criteria.

2



Statistics and Probability Letters, 2001, Vol 54, pp. 341-345

3 Two-class problem

Breiman et al. (1984, Theorem 4.5) prove the following theorem showing
that the search can be reduced to M − 1 subsets, if there are only two
classes.

Theorem 1 Suppose there are two classes, class 1 and class 2. Let X be a
categorical variable taking values on {1, 2, . . . ,M} where the categories are
in increasing p(1|X = i) values. If φ is a concave function, then one of the
M − 1 splits, X ∈ {1, . . . ,m} where 1 ≤ m < M , minimizes pLφ(p1L) +
pRφ(p1R).

Given λ, the best split based on C(λ) is the one that maximizes pLIλ(pL :
p)+pRIλ(pR : p) which is equivalent to the split that minimizes −pLIλ(pL :
p) − pRIλ(pR : p) . For fixed p = (p1, 1 − p1) with p1 �= 0, Iλ(pL : p) is a
convex function in p1L. Thus, −Iλ(pL : p) is a concave function. Therefore,
this computational advantage holds for the splitting criteria based on C(λ),
where λ is given.

For more than two classes, there is no simple extension of Theorem 1.
Chou (1991) provides a partial extension of Theorem 1 to three or more
classes. However, it is only locally optimal (Ripley, 1996, p. 238).

4 Divergence index and its property

Let X be a categorical random variable which takes values on {1, 2, . . . ,M}
and Y be the class variable which takes values on {1, 2, . . . , J}. The pro-
portion vector of Y given that X = i is denoted by pY |i for i = 1, 2, . . . ,M .
We define the divergence index based on Y and X as follows.

Definition 2 Given λ, the divergence index of Y given X is

∆(Y |X) =
m∑

i=1

P (X = i)Iλ(pY |i : p).

A nice property of the divergence index is shown in Theorem 2. It
claims that any split based on X using C(λ) has value at most equal to the
divergence index ∆(Y |X).

Theorem 2 Given a nonempty subset A ⊂ {1, 2, . . . ,M}, split s based on
variable X is created such that a case with X ∈ A goes to the left node,
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otherwise, it goes to the right node. Let Cs be the goodness of split value
based on C(λ), where λ is known. We have

∆(Y |X) ≥ Cs.

Proof. It is observed that
∑

i∈A

P (X = i) = πL,
∑

i∈A

P (X = i)pY |i = pLπL

∑

i�∈A

P (X = i) = πR,
∑

i�∈A

P (X = i)pY |i = pRπR.

By the fact that f(x) = (xλ+1 − x)/λ(λ + 1) is a convex function and
Jensen’s inequality. We have

∆(Y |X) =
∑

i∈A

P (X = i)Iλ(pY |i : p) +
∑

i�∈A

P (X = i)Iλ(pY |i : p)

= πL

∑

i∈A

P (X = i)/πLIλ(pY |i : p) + πR

∑

i�∈A

P (X = i)/πRIλ(pY |i : p)

≥ πLIλ(pL : p) + πRIλ(pR : p)
= Cs.

Suppose S is the set of all the possible splits based on X, we conclude that

∆(Y |X) ≥ max
s∈S

Cs.

Thus, the best split based on X has value less than or equal to ∆(Y |X).

5 Algorithm and example

Based on Theorem 2, the fast algorithm of Mola and Siciliano (1997) can be
extended to the family of divergence measures. Let X1,X2, . . . ,Xn, n ≥ 2
be categorical variables . Based on the family of splitting criteria C(λ), the
best split s∗ can be selected by the following steps.

1. Compute the divergence index for each variable and order the vari-
ables based on their index values. Denote the ordered variables by
X(1),X(2), . . . ,X(n) such that ∆(Y |X(1)) ≥ ∆(Y |X(2)) ≥ . . . ≥ ∆(Y |X(n)).

2. Initialize i = 1.
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3. Find all the possible splits based on X(i) and let the best split be s(i)

with value Cs(i)
.

4. If i = 1, set s∗ = s(1).

5. If i > 1 and Cs(i)
> Cs∗ , set s∗ = s(i).

6. If i = n, exit, otherwise, continue the procedure.

7. If Cs(i)
≥ ∆(Y |X(i+1)), set s∗ = s(i) and exit, otherwise let i = i + 1

and go back to step 3.

The algorithm could reduce the number of splits needed to be checked at
each node. We study the effect of the algorithm using the following example.
A random sample of 300 cases is generated. The class variable Y is equally
distributed on {1, 2, 3}. The categorical predictors X1,X2 and X3 which
take values on {1, 2, . . . ,M} are created such that when Y = 1, X1 = 1 and
when Y = 2, X1 = 2. When Y = 3, X1 is equally distributed on {3, . . . ,M}.
X2 and X3 are equally distributed on {1, 2, . . . ,M} and are independent of
Y .

Based on this generating scheme, we know that the best split at the root
node is X1 ∈ {1, 2}. The following table shows the results with M = 3,
6 and 9 based on the chi-squared criterion: C(1). The proposed method
chooses the same best split in all three cases. The CPU seconds for the
proposed algorithm are 1.2, 17.8 and 804.1 respectively. The computational
speed of the algorithm relative to the totally exhaustive search algorithm is
also reported. All the results are obtained by using S-PLUS on a Sun Ultra
2 workstation.

M ∆(Y |Xi) Cs∗ Speed
3 1,.004,.007 .500 2.7
6 1,.020,.011 .169 3.0
9 1,.016,.032 .159 3.6

It is found that the Cs∗ value is greater than ∆(Y |X(2)) in all cases. As
a result, the proposed algorithm only check about 1/3 of all the possible
splits at the root node to find the best split. Thus, it reduces the computa-
tional time. The saving will be more significant as the number of categorical
predictors increasing in these cases.

5



Statistics and Probability Letters, 2001, Vol 54, pp. 341-345

6 Conclusions

In this paper, the best categorical splits for binary classification trees based
on a family of splitting criteria are studied. We find that, for two-class
problem, the theorem of Breiman et al. (1984) can be applied to the family.
For three or more classes with many categorical variables, the fast algorithm
of Mola and Siciliano (1997) can also be extended via the divergence index
between the class variable and the categorical predictor. In the tree growing
process, the maximal tree is usually built and then pruned upward through
cross validation (Breiman et al., 1984; Ripley, 1996). This gain over the usual
exhaustive search method becomes even more profounding in the process
when many categorical predictors are present.
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