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Abstract

These notes give a very brief background to some relationships that are used in the R
package “HiddenMarkov” (Harte, 2010). This package fits various hidden Markov models.
R is a comprehensive statistical programming language managed by the R Development
Core Team (2010).
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1 Discrete Time Hidden Markov Model

1.1 Markov Chain

{Ci;1=1,---,n} has m states {1, -- -, m}. It satisfies the Markov Property:

Pl"{Ci ’ Cic1,-0 -, Cl} = Pl"{ci | Cifl}
e
If 73»2) = 7Yk, Viand j,k =1,---,m, then {C;} is homogeneous.

Note: we use the subscript ¢ to denote the discrete time points, and j and k£ to denote the
Markov states.

Now assume that {C;} is homogeneous. Let I' = (v,;;) be an m x m transition matrix. Let
(550 = Pr{C; = j}, and
o = (01,6, a).

then
5(1) _ 5(Z_1)F _ 5(1‘—2)]:12 _ 6(i—3)r3 )

The chain is stationary if ) = § Vi, i.e. § = 6I.

1.2 The Model

CHCHCENC
o

Denote the history of the process until time i as X .
Has conditional independence
Pr{X;| XD CcO} = Pr{X;|C;}.

When X is a continuous random variable, replace the probability function with the density
function.
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Let

Pij = Pl"{Xi = T; | Cz :j}v
and

D; = diag(pi1, pi2, -+ * , Dim) -

Further, let A be the set of parameters relevant to the observed probability distribution p;;. We
denote the set of model parameters (6, ', A) collectively as ©.

1.3 Forward and Backward Probabilities

The forward probabilities are
a; =Pr{Xy =2, X, =2;,C; = j}
fort =1,---,nand 7 = 1,---,m. They are calculated in a “forward” recursive manner. So
a; =Pr{X; =21,C1 =j} =Pr{X; =2, |C, = j} Pr{Cy = j} = (5§1)p1j
then
ag; = Pr{Xj=u1,Xs =15,Cy = j}

m

= Pr{X; =z, Xo = 29,C1 = k,Cy = j}

x>
—_

I
NE

Pr{X, =2, Xo =2, |Cy = k,Cy = j} Pr{C, = k,C5 = j}

e
Il
—

I
NE

PI‘{Xl = 1’1’01 = k} PI"{XQ = .I‘Q‘CQ :j}PI"{CQ :j‘Cl = k}Pr{Cl = k}

£
Il
—_

I
NE

Q1EYkjP2;

£
Il
—

5]2;1)p1k7kjp2j )

I
hE

B
Il
—

and so
(04217 T 7a2m) = 6(1)D1FD2 .

Similarly, it can be shown that

(Oéil, e ,Oéim) = 5(1)D1(FD2> e (FDZ) .

The backward probabilities are
51.7 = PI‘{Xi+1 :xi+17"'7Xn :xn|O’L :]}

fort =1,---,n—1and j = 1,---,m. They are calculated in a “backward” recursive manner.
Initially we set

(67117 t 7ﬁnm) - (]-7 Tty 1)1><m-
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Then

6(7171)]' = Pr{Xn = Tn | Cn_]_ = ]}
- PI‘{X = xn70n 1= ]}/Pr{Cn—l = j}

= ZPr{X =1,,C,1=7,C,=k}/Pr{C,1 =7}

= Z Pr{Xn = Tn | On—l = ja Cn = k} Pr{cn—l = j> Cn = k}/ Pr{cn—l = ]}
k=1
= ZPr{Xn =2,|C, =k} Pr{C,=k|Ch1 =3},
k=1
and so
(6(71—1)1’ T 76(n—1)m), = FDn]-, .

Similarly,
(Bia, -+, Bim) = ('Diy1)(I'Djya) - - - (T'Dy) 1’

Given estimates of the model parameters O, the n x m matrices A = («;;) and B = (;;) can
be calculated in a recursive manner.

1.4 Likelihood Function

Let 1" = (1,--+,1)1xm- Note that

NE

Pr{X; =2} = > Pr{X;=u;|Ci=j}Pr{C =}

<.
) 1
= =

= YD1,

and

PI"{Xz‘ = xj, Xiy1 = $i+1}

= Z Z Pr{Xi =T, Xip1 = Tip1 | Ci=ki,Ciy1 = ki+1} Pr{Ci =k, Cip1 = ki+1}
ki=1 k1+1—1
= Z Z Pr{X;, =u;|C; = k;} Pr{X;11 = xis1 | Ciz1 = ki1 } Pr{C; = k;}
ki=1kip1=1
Pr{C’Z“ = kl+1 ‘ C = kl}
= 0YDI'Di1,
and also '
PI{)(z = X, XZ‘_;,_g = Ii_,_g} = 5(Z)DiFZDi+gll .
Similarly
L=Pr{X"™ =zM} = Pr{X; =2y, -, X, =2,}
= 0WD,TD,I'Ds---TD,1
SW Dy (I Dy)(I'D3) - - (T D)1’
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If stationary, 0() can be replaced with § = JI, creating a recursive pattern I'D; for i =
1,---,n.

Note the relationship with the forward and backward probabilities, i.e. fori =1,--- n,

L= (a1, ) (Bir, -+ Bim) -

We want to estimate all parameters in © = (§,I", A) by maximising L. To do this, we consider
the complete data likelihood.

1.5 Complete Data Likelihood

Lc - PI{X1:I1,"',Xn:$n701:Cl,"',Cn:Cn}
= Pr{Xl:x17"'aXn:xn|Cl:Cla"'aCn:Cn}
Pr{Cl =0C, '7Cn - Cn}
== PI‘{Xl =T | Cl == Cl} PI‘{Cl == Cl}
H PI‘{Xl = XT; | Oz = Cl}PI'{OZ = C; | Oi—l = Ci—l}

=2

= 6£1)7016278263 * Ven—1cn H Pr{Xz = T | Oz - Ci}

=1

Now let
pij = Pr{X;=u|C;=j}
o 1 if C; =7
Uij = 0 otherwise
Vi o 1 if Ci—l :] and CZZIC
CLE 0 otherwise .
Then

log L. = Y i log gy + > (Z Uz’jk) log Yjk + > > uijlog pij -

j=1 j=1k=1 \i=2 j=1li=1

1.6 Baum-Welch Algorithm (EM)

Recall that
L.= Pr{X(") _ x(n)’ o — c(n)}’
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so that
L. — Pri{Cc™ = )| x(0) — L)y ppf x () — ()L
Lo =Pr{C™ = | X0 = 500} Pr{x() = 40}
maximise calculate in E-step
in M-step

1.6.1 Outline of Procedure

1. Guess initial values for ©.
2. Start Loop.

3. E-Step: estimate u;; and v;;;, given 6 (i.e. current estimate of ©), by taking their condi-
tional expectations, 1.e.:

ui; = Elu;[0] )
= Pr{C;=j| X" =2z 6}
= Qi;f;5/L
and

b = Elvyx|©]
= Pr{Ci_1 =4,C; = k| X™ =2z™ 6}
= A1 PiwOin/ L
4. M-Step: estimate new values for 0 by maximising L.; see §1.6.2, §1.6.3, and §1.6.4.
5. If © not converged, return to (2).

6. Stop.

If the Markov chain is non-stationary, the M-step can be performed by maximising each term
in L, separately.

1.6.2 First Term of L.

Want to maximise

Z Uyj lOg (Sj(l)
j=1
subject to
Yoo =1.
j=1
Let

j=1

j=1
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where 6 is a Lagrange multiplier. Then

oFr . Uy
OO
90, J;
so that 0 = ulj/éj(-l) for all 7, hence
g](l) = Uiy -

1.6.3 Second Term of L,

Similarly as above, let
PSS (S o+ 30 (1- 320 )
j=1k=1 \i=2 j=1 k=1
where 64, - - -, 0, are Lagrange multipliers. Thus
oF 1 &
=t — Y v
Mk ’ Vik ,; ’
hence letting —0;7;1, + >_i_s viji = 0, we get
> <—9ﬂjk + Z%‘k) =0.
k=1 i=2
Since 7/, 7v;r = 1, then
05 =22 vijk,
k=1 =2
so that

Z?:z Vijk
22”21 2?22 Vijk

Yik =

1.6.4 Third Term of L.

Maximisation of the last term, i.e.
> uijlogpi
j=1i=1

depends on the probability distribution of the observed process, i.e. p;; = Pr{X; = z;|C; =
j}. The set of parameters is denoted by A.

The following subsections give details for specific distributions.
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Poisson Distribution

In this case

pij =Pr{X;=z;|Ci =j} =
Let
F = ZZUU log pi;
j=114=1
a j=1i=1
and so OF -
DYWL
hence .
X‘ Zi:l U”{El
J n

Exponential Distribution

In this case

AT

exp( Aj)-

Z

Wj [IBMJ‘ - log(xi!) - )‘j] )

Y

pij = fx, (x| Cs = j) = Njexp(—=A;z;) .

Let
F o= > wjlogp;
Jj=11:=1
= Y > uyy[log,
j=1:=1
and so
OF 2”: ( 1
0N I ’ Aj
hence n
N i=1 Uij
’ i=1 Uij T

Binomial Distribution

In this case
n;
o

Pij:PY{Xi:fEi‘Ci:j}:<

and so "
L 2uim1 Ui
;=

> Wfi(l — )T

== .
i=1 WijTi
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Gaussian Distribution

In this case

1 -1
Py = Fr(o G = ) =~ exp (m—u-)?) ,
! 27T0'J2- 2032‘ ’

and so s

~ i=1 WijLq

=

i Wij

and

D Wij

n .. L 77.)2
G, = \J > i Wij (; NJ) '

Gamma Distribution

)\a
f(ZE) - F(CL) lﬂ_l eXp(_)\x)
Fo= izlogf(%)
=1
:i"W%Aq%m@+m—m%m—MA
=1

= alog\ —logI'(a) + (a — 1)logz — AT

oF _a__
o oa "
OF -
“ = logh—T(a)+1
5 og A (a) +logx
rr_ —a
N X2
0*F
- - Y
da? (a)
0’F ’F 1

DadN oNda A

<§)Z<2>_<fqﬁm>q<%>

The two sufficient statistics Z and log = become, for j = 1,---,m,
Dy Ui T and Dy Ui log
2lis Uij 2lis Uij
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Beta Distribution

F o= 13 log f(a)
n4

= logI'(a+b) —logI'(a) —logI'(b) + (a — 1)log x

oF
da
oF
ob

+(b — 1)log(1

)

= U(a+0b)—¥(a)+logx

= Y(a+b)—V(a)+log(l—z)

0*F
— \Ijl _ \I[/
T Wty - V)
aQF ! /
O2F PF
9adb ~ boa  Lletb)

@\ (a\ [ W(a+b)-V(a) W' (a +b) -
v ]\ b U'(a+b) V'(a+b) — V()
The two sufficient statistics log = and log(1 — x) become, for j = 1,---,m,

n
i Uijlog

Di Wij

Log Normal Distribution

and

o ugylog(l — ;)

Do Wij

oF
da
OF
b

11

If X has a lognormal distribution with parameters ;. and o, then log X has a normal distribution
with mean y and variance o2. In this case

, 1
R
Je J

(log 71 — m?) |
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and so
E[long | Cz - j] = de )
Varllog X;|C; = j] = o7,
BIX;|C;=j] = exp(u;+07/2), and
Var[X; |C; = j] = exp(2u; + 0 )(exp(o) —1).
Further
~ > Uij log x;
Hj = —=n .
D i1 Wij
and

D Wij

. J >y wij(log ; — fi;)?
O'j = .

Logistic Distribution

Like the beta and gamma distributions, a Newton iterative procedure is used here too. The
required first and second derivatives can be found in Rao & Hamed (2000, §9.1.2). Here the
location parameter is denoted by m and the scale parameter by a. Note that there are a couple
of errors:

In Equation 9.1.10, n should be N; and Equation 9.1.11 should be
a

Equation 9.1.19 should be

1.7 Pseudo Residuals

We follow the method outlined by Zucchini (2005). Let X 9 = (X1, -+, X;_1, Xip1, -, X),
i.e. denotes the observed process except for the point X;. For eachi =1, -- -, n we calculate

Ui = Pr{X; <@ | XU =20}
Pr{X; < x;, X = (=0}
Pr{X() = z(-0}
6MDy(IDy) - (T D; 1) (TDY) (T Diy) (T Diga) -+ (PD,)V
WD (T Dy) -+ (D' D;—1)(TI)(LDi1) (T Dyy2) - - - (TDy) 17

where D} is an m x m diagonal matrix with elements Pr{X; < xz;|C; = j} forj=1,--- ,m,
and [ is the identity matrix. This is achieved by using the forward and backward probabilities.
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The pseudo residuals are then z; = ®~!(1);), where ® denotes the standard normal distribution
function. If the observation sequence has been sampled from the assumed model, then the z;’s
should have an approximate standard normal distribution.

If the distribution of the observation variables is discrete the following correction is made. Also
calculate ¢} = Pr{X; < z; — 1| X9 = 2=)}, then

o = (I)_l (1/)1 +¢§>
1 9 .

1.8 Viterbi Algorithm

The purpose of the Viterbi algorithm is to globally decode the underlying hidden Markov state
at each time point. It does this by determining the sequence of states (¢}, - - -, ¢;;) which max-
imises the joint distribution of the hidden states given the entire observed process {z(™}, i.e.

(¢, ch) = argmax  Pr{Ci=c1,--+,Ch=c, | XV =2}
c1,yen€{1,2,--;m}

2 Markov Modulated Poisson Process

2.1 The Model

Let S(t) be a Markov process in continuous time having discrete states 1, - - -, m. The process
makes a transition from state s, _; to s; at time 7;. The time spent in state s; has an exponential
distribution with parameter ¢5,. Events are occur as a Poisson process at times t1,ts, - -, t,.
The Poisson rate is determined by the Markov state, being constant within each Markov state.

R YooY \ .
L S A S2 A Ss A S4 / oo L S»
’[,;'1 T2 T3 T4 Ts T

tb t t te t ts et

We use the same formulation of the model as Rydén (1996). He assumes that the start and finish
of the observation period coincides with events at times ¢, and ¢,. See also Meier-Hellstern
(1987) for further discussion.
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2.2 () Matrix

Let P(t) be an m x m matrix with elements
pi(t) = Pr{S(t) = k[ 5(0) = j},

where S(t) is a continuous time Markov process with m discrete states.

Let () be the m x m infinitesimal generator matrix with jkth element g;, such that

(ijk(t) — zz:pjg(t)qgk = ; qjeper(t) -

Given the initial condition that P(0) = I, P(t) has solution

P(t) = exp(tQ)

Note that the diagonal elements are negative, and —¢;; and is the exponential rate of transitions
out of state j. Letting ¢; = —g;;, ¢;x/¢; are the transition probabilities from state j to state k
when j # k. Hence

> k=0
k=1

for all j.

2.3 Matrix Exponential

Given an m x m matrix @), exp(Q) is to be interpreted as the matrix exponential, not the
exponential of the individual elements. We briefly outline various methods of evaluation.

2.3.1 Taylor’s Series Expansion

exp(Q) =T +Q+ Q7 + Q%+

where [ is the m x m identity matrix.

2.3.2 Eigen Value Decomposition

Assume that there exists a matrix £ of eigenvectors and an m X m diagonal matrix W containing
the eigenvalues 1y, - - -, ¥, such that A — Q = EVE~!, where A = diag()\;, -+, \,n). Note
that if W is a diagonal matrix, then exp(¥) is also a diagonal matrix. Inserting this into a
Taylor’s series expansion gives

1 1
exp(A = Q) =T+ EVE " [ EVE™ 4 G EVE™ 4. = Eexp(V)E ™.
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2.3.3 Poisson Series Expansion

Let a be a number that is a little larger than the absolute values of the elements on the diagonal
of the m x m matrix (); and define B as

1
B=1 + 7@7
a
where [ is the m x m identity matrix. Then Q) = a(B — I), and so

exp(Q) = exp(a(B —1T))
= exp(aB)exp(—a)
a' a? a?
= lexp(—a)+ BF exp(—a) + 325 exp(—a) + 335 exp(—a) + - -

See Klemm et al (2003, §2.2) for further details.

2.4 Likelihood Function

Assume that events occur at times tg, ¢1, - - -, t,,, that ty = 0, and that ¢, coincides with the end
of the observation period. Lety, = t,—t, 1 for { = 1,-- -, r. Also define the auxiliary Markov
chain as the Markov states at the times at which the events were generated, i.e.

Co = S(ts),

for ¢ = 1,---,r. Then the sequence {(Cy,Ys),¢ = 1,---,r} is a Markov renewal sequence
with transition density matrix

exp{(Q — A)y}A,

where the jkth element is
Pr{Cr =k, Y=y |Cpy1 = j}

for all /. Given conditional independence, the likelihood function is easily written as

P{Y®) =y} — 50 (ﬁeXp{@—A)ye}A) X
/=1

= 6P exp{(Q — My }A - exp{(Q — M)y, JAT. (1)

2.5 EM Algorithm
2.5.1 Complete Data Likelihood

State transitions occur at 7;, 7 = 1,-- -, n, i.e.
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The sequence of visited Markov states is {S;} where S; = S(7;). Then for j # k

J
The time in state S; is X; = 7,41 — 7;.
Note that we observe the process on [0, 7,,1), but not at 7,,,1. It follows that

Pr{X(”) =z s — S(n)}

n—1
= PI'{Sl = 81} (H le(:L‘z | Sz = Si) PI"{SH_l = Si+1 | Sz = Sz}> X

i=1

Pr{X, > z,|S, = s,}

= O dns | Gooie (ﬁq exp(—¢q x)) exp(—qs, Tn)
S1 Sq S; M Spntn) -
q81 QSQ an,l =1

Note that this expression has the same form as in the discrete time case except for the last term,
ie. Pr{X, > z,|S, = s,}. Further simplification gives

Pr{X®™ =2 50 = s} = §0¢, o qosy G515 || eXP(—Gs75) -
=1

As in the discrete time case, define u;; and v; ;. as:

{1 if s, =3

Ui = )
K 0 otherwise

v o 1 if Si—lzj and Si:k’
ik — 0 otherwise .

Then

log Pr{X™ = z(™ g — 4m

SIS 39 o] 0 SN [FVVES 3) s

j=1f=1 \i=2 j=1li=1
k#j

2.5.2 Add Event Times

The observed Poisson event times are denoted as t1, ¢, - - -, t,., where r is the total number of
events. We will denote the collection of all event times as t") = (¢, 5, -, t,).

Given we know z(™ and s(™, we can deduce the interval to which each event belongs, i.e.
events in interval ¢ are those with times in {t, : 7, < t;, < 7;21}. A useful variable for
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notational purposes is the number of events in the ith interval, which we will denote as r;.
Hence the event times in the sth interval can now be more explicitly stated as:

t&;—‘rl? tfﬁ-?v e 7tZi+7'i7

where £; = 3% _\ r;. However the “complete data” description of the process can be given as
simply (™, 2™ (),

We want the joint density of inter—event times in the ¢th interval. Let the number of events in

previous intervals be £; = 370~ _! r;, then we want the joint density of these inter-event times:

tfi-i-l — Tiy t&'-}-? - t&—i—la t€i+3 - t&-ﬁ-?a ) tfrﬁ-n’ - t&—l—m—l

together with the density that no events occur in the interval (¢, ,,, 7;+1). Denote this as

F(Ti teistoso, - s togr, Ti1 | Si = 84, Xs = a3)

= g exp[—=A, (Lo 41 — 7)] As, exp[—=As, (o2 — te,41)] -+
As; XD A, (toar; — toir,—1)] €XP[= s, (Tix1 — o, 40,)]
= AL exp(—=Ay(Tis1 — 7))
= Al exp(—Ay7:)
(As,@i)"

= T exp(—As, ;)

7”1'!

where )\, is the Poisson event rate while the Markov process is in state s;. Taking logarithms
and summing over all visited Markov states, we get

n
> 108 f(Tistors toigas -+ s toyrys T | Si = 84, Xi = ;)
=1
' n n
= Z T IOg >\5i — Z in)\si
i—1 i—1

= Z uijr,; IOg >\j — Z Z U,ijﬂfi)\J
=1 j5=1

=1j= i=1j=1
Note that the last subinterval (¢ = n) terminates at ¢,..

The “complete data” log-likelihood is then

log Pr{X® — 2 gt — 4 () — ;01

zum log s + 373" (z ) log g — 303wyl + ) +
J=1k=1 j=11i=1
k#j

Z Z ug;ri log A;j .

i=1j=1
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Rydén (1996, Eq 7) uses a different notation. However, the terms in common are

n
time spent in state j = Z U T;
i=1
n
number of events occurring in state j = u;;r;, and
i=1
n
number of switches from state j to k= > v .
=2

2.5.3 E-Step and M-Step

The model parameters that require estimation are © = (Q, A). To implement the EM algo-
rithm, one initially needs to analytically evaluate the expectations:

N

i=1

N
T — t(r)] . E [Z Ui R;
i=1

N
T = t(’")] .and E [Z Viik

=2

7)) — t(f)] 7

where the uppercase variables within the expectations are the corresponding random variables
to the lower case realisations. One then uses these expressions as estimators; and together with
the current parameter estimates O, the terms (i.e. “missing data”)

n n n
D uiTi Y uiri, and Y v
=1 =1 =2

are estimated. This is referred to as the expectation or E-step.

These values then replace the corresponding terms in the complete data likelihood. Then new
values are estimated for © by maximising this complete data likelihood. This is referred to as
the maximisation or M-step. The process is repeated until the estimates © converge.

Evaluation of the above expectations pose a number of problems, both analytical and numeri-
cal. This appears to be the most complicated aspect in the application of the EM algorithm to
the MMPP model. Rydén (1996) derives expressions for the expectations based on an eigen-
value decomposition, while the expressions derived by Klemm et al (2003) use a Poisson like
series expansion.

2.5.4 Addition of Marks

The complication mentioned above is further compounded by the addition of “marks”. Let
W (") be marks associated with each of the r events. Assume that the marks have an exponential
distribution with rate parameter £; when the Markov process S(¢) is within state j. Let

== diag[gla e >§m] )

so now the model parameters that require estimation are © = (Q, A, Z).
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The joint density of the marks in the ith interval is

0=0;+1

f(w€¢+17 We; 42, Weyr; ’ S’L = 54, XZ = :Cz) = 5; exXp (_fsz Z w@) )
where ¢; = r{ + - - - + r;_1. This will add two further terms to the complete data likelihood:

DD ugrilog&y = Y wiéy Y wp.

i=1j=1 i=1 j=1 0=0;+1

Hence, the “complete data” log-likelihood is now

log Pr{X(”) — m(ﬂ), S — 3(71)’ 7)) — t(T), W — w(?“)}

= Suytosd? + 33 (S ) log g3 — 3 3 w0y + )
J= 127&; j=1l1=1
+ZZ%TZ log(&A7) =D D uywe;.
i=1j=1 i=1j=1/0=0;+1

How do these new terms affect the expectations in §2.5.3. Now our observed data are 7") and
W) and so the expectations are now conditional on both, i.e. we want

£ PR — )|

N
TR — ) ) = wm] B [Z U,R;

together with the new term

N Ry
Z Z UJWZ R) _ t(?‘)7 W — (") 7
i=10=0;+1

where /; = Ry + - -+ + R;_1. The new term is the expected sum of marks “emitted” by events
that occur while the Markov process is in state j.

2.6 Particle Filters

See Arulampalam et al (2002), Doucet et al (2001), and Doucet & Tadi¢ (2003).
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