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The problem with information

www.betaversion.org/~stefano/linotype/news/26/

As more information becomes
available, it becomes more difficult
to access what we are looking for.

We need new tools to help us
organize, search, and understand
these vast amounts of information.
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Topic modeling

Candida Hofer 

Topic modeling provides methods for automatically organizing,
understanding, searching, and summarizing large electronic archives.

1 Uncover the hidden topical patterns that pervade the collection.

2 Annotate the documents according to those topics.

3 Use the annotations to organize, summarize, and search the texts.
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Discover topics from a corpus

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations
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Model the evolution of topics over time
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Model connections between topics
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Annotate images
Automatic image annotation

birds nest leaves branch tree
predicted caption: predicted caption:

people market pattern textile displaysky water tree mountain people
predicted caption:

fish water ocean tree coral sky water buildings people mountain
predicted caption: predicted caption: predicted caption:

scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53

SKY WATER TREE

MOUNTAIN PEOPLE

Automatic image annotation

birds nest leaves branch tree
predicted caption: predicted caption:

people market pattern textile displaysky water tree mountain people
predicted caption:

fish water ocean tree coral sky water buildings people mountain
predicted caption: predicted caption: predicted caption:

scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53

SCOTLAND WATER

FLOWER HILLS TREE

Automatic image annotation

birds nest leaves branch tree
predicted caption: predicted caption:

people market pattern textile displaysky water tree mountain people
predicted caption:

fish water ocean tree coral sky water buildings people mountain
predicted caption: predicted caption: predicted caption:

scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53

SKY WATER BUILDING

PEOPLE WATER

Automatic image annotation

birds nest leaves branch tree
predicted caption: predicted caption:

people market pattern textile displaysky water tree mountain people
predicted caption:

fish water ocean tree coral sky water buildings people mountain
predicted caption: predicted caption: predicted caption:

scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53

FISH WATER OCEAN

TREE CORAL

Automatic image annotation

birds nest leaves branch tree
predicted caption: predicted caption:

people market pattern textile displaysky water tree mountain people
predicted caption:

fish water ocean tree coral sky water buildings people mountain
predicted caption: predicted caption: predicted caption:

scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53

PEOPLE MARKET PATTERN

TEXTILE DISPLAY

Automatic image annotation

birds nest leaves branch tree
predicted caption: predicted caption:

people market pattern textile displaysky water tree mountain people
predicted caption:

fish water ocean tree coral sky water buildings people mountain
predicted caption: predicted caption: predicted caption:

scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53

BIRDS NEST TREE

BRANCH LEAVES
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Topic modeling topics

From a machine learning perspective, topic modeling is a case study in
applying hierarchical Bayesian models to grouped data, like documents or
images. Topic modeling research touches on

• Directed graphical models

• Conjugate priors and nonconjugate priors

• Time series modeling

• Modeling with graphs

• Hierarchical Bayesian methods

• Fast approximate posterior inference (MCMC, variational methods)

• Exploratory data analysis

• Model selection and nonparametric Bayesian methods

• Mixed membership models
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Latent Dirichlet allocation (LDA)

1 Introduction to LDA

2 The posterior distribution for LDA

Approximate posterior inference

1 Gibbs sampling

2 Variational inference

3 Comparison/Theory/Advice

Other topic models

1 Topic models for prediction: Relational and supervised topic models

2 The logistic normal: Dynamic and correlated topic models

3 “Infinite” topic models, i.e., the hierarchical Dirichlet process

Interpreting and evaluating topic models

D. Blei Topic Models



Latent Dirichlet Allocation
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Probabilistic modeling

1 Treat data as observations that arise from a generative probabilistic
process that includes hidden variables

• For documents, the hidden variables reflect the thematic
structure of the collection.

2 Infer the hidden structure using posterior inference

• What are the topics that describe this collection?

3 Situate new data into the estimated model.

• How does this query or new document fit into the estimated
topic structure?
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Intuition behind LDA

Simple intuition: Documents exhibit multiple topics.
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Generative model

gene     0.04
dna      0.02
genetic  0.01
.,,

life     0.02
evolve   0.01
organism 0.01
.,,

brain    0.04
neuron   0.02
nerve    0.01
...

data     0.02
number   0.02
computer 0.01
.,,

Topics Documents Topic proportions and
assignments

• Each document is a random mixture of corpus-wide topics

• Each word is drawn from one of those topics
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The posterior distribution

Topics Documents Topic proportions and
assignments

• In reality, we only observe the documents

• Our goal is to infer the underlying topic structure
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Graphical models (Aside)

· · ·

Y

X1 X2 XN

Xn

Y

N

≡

• Nodes are random variables

• Edges denote possible dependence

• Observed variables are shaded

• Plates denote replicated structure
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Graphical models (Aside)

· · ·

Y

X1 X2 XN

Xn

Y

N

≡

• Structure of the graph defines the pattern of conditional dependence
between the ensemble of random variables

• E.g., this graph corresponds to

p(y , x1, . . . , xN) = p(y)
N∏

n=1

p(xn | y)
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Latent Dirichlet allocation

θd Zd,n Wd,n
N

D K
βk

α η

Dirichlet
parameter

Per-document
topic proportions

Per-word
topic assignment

Observed
word Topics

Topic
hyperparameter

Each piece of the structure is a random variable.
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The Dirichlet distribution

• The Dirichlet distribution is an exponential family distribution over
the simplex, i.e., positive vectors that sum to one

p(θ | ~α) =
Γ (
∑

i αi )∏
i Γ(αi )

∏

i

θαi−1
i .

• The Dirichlet is conjugate to the multinomial. Given a multinomial
observation, the posterior distribution of θ is a Dirichlet.

• The parameter α controls the mean shape and sparsity of θ.

• The topic proportions are a K dimensional Dirichlet.
The topics are a V dimensional Dirichlet.
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The Dirichlet distribution

(From Wikipedia)
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Latent Dirichlet allocation

θd Zd,n Wd,n
N

D K
βk

α η

• LDA is a mixed membership model (Erosheva, 2004) that builds on
the work of Deerwester et al. (1990) and Hofmann (1999).

• For document collections and other grouped data, this might be
more appropriate than a simple finite mixture.

• The same model was independently invented for population genetics
analysis (Pritchard et al., 2000).
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Latent Dirichlet allocation

θd Zd,n Wd,n
N

D K
βk

α η

• From a collection of documents, infer

• Per-word topic assignment zd ,n

• Per-document topic proportions θd
• Per-corpus topic distributions βk

• Use posterior expectations to perform the task at hand, e.g.,
information retrieval, document similarity, etc.

D. Blei Topic Models



Latent Dirichlet allocation

θd Zd,n Wd,n
N

D K
βk

α η

Approximate posterior inference algorithms

• Mean field variational methods (Blei et al., 2001, 2003)

• Expectation propagation (Minka and Lafferty, 2002)

• Collapsed Gibbs sampling (Griffiths and Steyvers, 2002)

• Collapsed variational inference (Teh et al., 2006)

For comparison, see Mukherjee and Blei (2009) and Asuncion et al. (2009).

D. Blei Topic Models



Example inference

• Data: The OCR’ed collection of Science from 1990–2000

• 17K documents
• 11M words
• 20K unique terms (stop words and rare words removed)

• Model: 100-topic LDA model using variational inference.

D. Blei Topic Models



Example inference
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Example inference

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations
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Example inference (II)
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Example inference (II)

problem model selection species
problems rate male forest

mathematical constant males ecology
number distribution females fish

new time sex ecological
mathematics number species conservation
university size female diversity

two values evolution population
first value populations natural

numbers average population ecosystems
work rates sexual populations
time data behavior endangered

mathematicians density evolutionary tropical
chaos measured genetic forests

chaotic models reproductive ecosystem
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Used to explore and browse document collections

measured
average
range
values

different
size
three

calculated
two
low

sequence
region

pcr
identified
fragments 

two
genes
three
cdna

analysis  

residues
binding
domains

helix
cys

regions
structure
terminus
terminal

site

computer
methods
number

two
principle
design
access

processing
advantage
important

0
.0
0

0
.1
0

0
.2
0

Top Ten Similar Documents

Exhaustive Matching of the Entire Protein Sequence Database
How Big Is the Universe of Exons?
Counting and Discounting the Universe of Exons
Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Alignment
Ancient Conserved Regions in New Gene Sequences and the Protein Databases
A Method to Identify Protein Sequences that Fold into a Known Three- Dimensional Structure
Testing the Exon Theory of Genes: The Evidence from Protein Structure
Predicting Coiled Coils from Protein Sequences
Genome Sequence of the Nematode C. elegans: A Platform for Investigating Biology

Top words from the top topics (by term score) Expected topic proportions

Abstract with the most likely topic assignments
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Why does LDA “work”?

Why does the LDA posterior put “topical” words together?

• Word probabilities are maximized by dividing the words among the
topics. (More terms means more mass to be spread around.)

• In a mixture, this is enough to find clusters of co-occurring words.

• In LDA, the Dirichlet on the topic proportions can encourage
sparsity, i.e., a document is penalized for using many topics.

• Loosely, this can be thought of as softening the strict definition of
“co-occurrence” in a mixture model.

• This flexibility leads to sets of terms that more tightly co-occur.
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LDA is modular, general, useful

Dynamic Topic Models

ways, and quantitative results that demonstrate greater pre-

dictive accuracy when compared with static topic models.

2. Dynamic Topic Models

While traditional time series modeling has focused on con-

tinuous data, topic models are designed for categorical

data. Our approach is to use state space models on the nat-

ural parameter space of the underlying topic multinomials,

as well as on the natural parameters for the logistic nor-

mal distributions used for modeling the document-specific

topic proportions.

First, we review the underlying statistical assumptions of

a static topic model, such as latent Dirichlet allocation

(LDA) (Blei et al., 2003). Let β1:K be K topics, each of

which is a distribution over a fixed vocabulary. In a static

topic model, each document is assumed drawn from the

following generative process:

1. Choose topic proportions θ from a distribution over

the (K − 1)-simplex, such as a Dirichlet.

2. For each word:

(a) Choose a topic assignment Z ∼ Mult(θ).

(b) Choose a wordW ∼ Mult(βz).

This process implicitly assumes that the documents are

drawn exchangeably from the same set of topics. For many

collections, however, the order of the documents reflects

an evolving set of topics. In a dynamic topic model, we

suppose that the data is divided by time slice, for example

by year. We model the documents of each slice with a K-
component topic model, where the topics associated with

slice t evolve from the topics associated with slice t − 1.

For a K-component model with V terms, let βt,k denote

the V -vector of natural parameters for topic k in slice t.
The usual representation of a multinomial distribution is by

its mean parameterization. If we denote the mean param-

eter of a V -dimensional multinomial by π, the ith com-
ponent of the natural parameter is given by the mapping

βi = log(πi/πV ). In typical language modeling applica-
tions, Dirichlet distributions are used to model uncertainty

about the distributions over words. However, the Dirichlet

is not amenable to sequential modeling. Instead, we chain

the natural parameters of each topic βt,k in a state space

model that evolves with Gaussian noise; the simplest ver-

sion of such a model is

βt,k |βt−1,k ∼ N (βt−1,k,σ2I) . (1)

Our approach is thus to model sequences of compositional

random variables by chaining Gaussian distributions in a

dynamic model and mapping the emitted values to the sim-

plex. This is an extension of the logistic normal distribu-

A A A

θθθ

zzz

ααα

β ββ

w w w

N N N

K

Figure 1. Graphical representation of a dynamic topic model (for

three time slices). Each topic’s natural parameters βt,k evolve

over time, together with the mean parameters αt of the logistic

normal distribution for the topic proportions.

tion (Aitchison, 1982) to time-series simplex data (West

and Harrison, 1997).

In LDA, the document-specific topic proportions θ are

drawn from a Dirichlet distribution. In the dynamic topic

model, we use a logistic normal with mean α to express

uncertainty over proportions. The sequential structure be-

tween models is again captured with a simple dynamic

model

αt |αt−1 ∼ N (αt−1, δ
2I) . (2)

For simplicity, we do not model the dynamics of topic cor-

relation, as was done for static models by Blei and Lafferty

(2006).

By chaining together topics and topic proportion distribu-

tions, we have sequentially tied a collection of topic mod-

els. The generative process for slice t of a sequential corpus
is thus as follows:

1. Draw topics βt |βt−1 ∼ N (βt−1,σ2I).

2. Draw αt |αt−1 ∼ N (αt−1, δ2I).

3. For each document:

(a) Draw η ∼ N (αt, a2I)

(b) For each word:

i. Draw Z ∼ Mult(π(η)).

ii. DrawWt,d,n ∼ Mult(π(βt,z)).

Note that π maps the multinomial natural parameters to the

mean parameters, π(βk,t)w = exp(βk,t,w)
P

w exp(βk,t,w) .

The graphical model for this generative process is shown in

Figure 1. When the horizontal arrows are removed, break-

ing the time dynamics, the graphical model reduces to a set

of independent topic models. With time dynamics, the kth

D

C

T

U

φ ω
Nd

β

αdi

θα

γ ψ

Figure 5: Modeling community with topics

sider the conditional probability P (c, u, z|ω), a word ω as-
sociates three variables: community, user and topic. Our
interpretation of the semantic meaning of P (c, u, z|ω) is
the probability that word ω is generated by user u under
topic z, in community c.

Unfortunately, this conditional probability cannot be com-
puted directly. To get P (c, u, z|ω) ,we have:

P (c, u, z|ω) =
P (c, u, z, ω)

Σc,u,zP (c, u, z, ω)
(3)

Consider the denominator in Eq. 3, summing over all c,
u and z makes the computation impractical in terms of ef-
ficiency. In addition, as shown in [7], the summing doesn’t
factorize, which makes the manipulation of denominator
difficult. In the following section, we will show how an
approximate approach of Gibbs sampling will provide so-
lutions to such problems. A faster algorithm EnF-Gibbs
sampling will also be introduced.

4. SEMANTICCOMMUNITYDISCOVERY:
THE ALGORITHMS

In this section, we first introduce the Gibbs sampling
algorithm. Then we address the problem of semantic com-
munity discovery by adapting Gibbs sampling framework
to our models. Finally, we combine two powerful ideas:
Gibbs sampling and entropy filtering to improve efficiency
and performance, yielding a new algorithm: EnF-Gibbs
sampling.

4.1 Gibbs sampling
Gibbs sampling is an algorithm to approximate the joint

distribution of multiple variables by drawing a sequence
of samples. As a special case of the Metropolis-Hastings
algorithm [18], Gibbs sampling is a Markov chain Monte
Carlo algorithm and usually applies when the conditional
probability distribution of each variable can be evaluated.
Rather than explicitly parameterizing the distributions for
variables, Gibbs sampling integrates out the parameters
and estimates the corresponding posterior probability.

Gibbs sampling was first introduced to estimate the Topic-
Word model in [7]. In Gibbs sampling, a Markov chain is
formed, the transition between successive states of which
is simulated by repeatedly drawing a topic for each ob-
served word from its conditional probability on all other
variables. In the Author-Topic model, the algorithm goes
over all documents word by word. For each word ωi, the

topic zi and the author xi responsible for this word are
assigned based on the posterior probability conditioned on
all other variables: P (zi, xi|ωi, z−i, x−i,w−i,ad). zi and
xi denote the topic and author assigned to ωi, while z−i

and x−i are all other assignments of topic and author ex-
cluding current instance. w−i represents other observed
words in the document set and ad is the observed author
set for this document.

A key issue in using Gibbs sampling for distribution
approximation is the evaluation of conditional posterior
probability. In Author-Topic model, given T topics and V
words, P (zi, xi|ωi, z−i,x−i,w−i, ad) is estimated by:

P (zi = j, xi = k|ωi = m, z−i,x−i,w−i,ad) ∝ (4)

P (ωi = m|xi = k)P (xi = k|zi = j) ∝ (5)

CWT
mj + β

Σm′CWT
m′j + V β

CAT
kj + α

Σj′CAT
kj′ + Tα

(6)

where m′ "= m and j′ "= j, α and β are prior parameters
for word and topic Dirichlets, CWT

mj represents the number
of times that word ωi = m is assigned to topic zi = j,
CAT

kj represents the number of times that author xi = k is
assigned to topic j.

The transformation from Eq. 4 to Eq. 5 drops the vari-
ables, z−i, x−i, w−i, ad, because each instance of ωi is
assumed independent of the other words in a message.

4.2 Semantic community discovery
By applying the Gibbs sampling, we can discover the se-

mantic communities by using the CUT models. Consider
the conditional probability P (c, u, z|ω), where three vari-
ables in the model, community, user4 and topic, are asso-
ciated by a word ω. The semantic meaning of P (c, u, z|ω)
is the probability that ω belongs to user u under topic z,
in community c. By estimation of P (c, u, z|ω), we can la-
bel a community with semantic tags (topics) in addition to
the affiliated users. The problem of semantic community
discovery is thus reduced to the estimation of P (c, u, z|ω).

(1) /* Initialization */
(2) for each email d
(3) for each word ωi in d
(4) assign ωi to random community, topic and user;
(5) /* user in the list observed from d */
(6) /* Markov chain convergence */
(7) i← 0;
(8) I ← desired number of iterations;
(9) while i < I
(10) for each email d
(11) for each ωi ∈ d
(12) estimate P (ci, ui, zi|ωi), u ∈ αd;
(13) (p, q, r)← argmax(P (cp, uq , zr|ωi));
(14) /*assign community p,user q, topic r to ωi*/
(15) record assignment τ (cp, uq , zr, ωi);
(16) i + +;

Figure 6: Gibbs sampling for CUT models

4Note we denote user with u in our models instead of x as
in previous work.
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Figure 1: Graphical models for (a) the standard LDA topic model (left) and (b) the proposed special
words topic model with a background distribution (SWB) (right).

are generated by drawing a topic t from the document-topic distribution p(z|θd) and then drawing
a word w from the topic-word distribution p(w|z = t, φt). As shown in Griffiths and Steyvers
(2004) the topic assignments z for each word token in the corpus can be efficiently sampled via
Gibbs sampling (after marginalizing over θ and φ). Point estimates for the θ and φ distributions
can be computed conditioned on a particular sample, and predictive distributions can be obtained by
averaging over multiple samples.

We will refer to the proposed model as the special words topic model with background distribution
(SWB) (Figure 1(b)). SWB has a similar general structure to the LDA model (Figure 1(a)) but with
additional machinery to handle special words and background words. In particular, associated with
each word token is a latent random variable x, taking value x = 0 if the word w is generated via
the topic route, value x = 1 if the word is generated as a special word (for that document) and
value x = 2 if the word is generated from a background distribution specific for the corpus. The
variable x acts as a switch: if x = 0, the previously described standard topic mechanism is used
to generate the word, whereas if x = 1 or x = 2, words are sampled from a document-specific
multinomialΨ or a corpus specific multinomialΩ (with symmetric Dirichlet priors parametrized by
β1 and β2) respectively. x is sampled from a document-specific multinomial λ, which in turn has
a symmetric Dirichlet prior, γ. One could also use a hierarchical Bayesian approach to introduce
another level of uncertainty about the Dirichlet priors (e.g., see Blei, Ng, and Jordan, 2003)—we
have not investigated this option, primarily for computational reasons. In all our experiments, we
set α = 0.1, β0 = β2 = 0.01, β1 = 0.0001 and γ = 0.3—all weak symmetric priors.

The conditional probability of a word w given a document d can be written as:

p(w|d) = p(x = 0|d)
T∑

t=1

p(w|z = t)p(z = t|d) + p(x = 1|d)p′(w|d) + p(x = 2|d)p′′(w)

where p′(w|d) is the special word distribution for document d, and p′′(w) is the background word
distribution for the corpus. Note that when compared to the standard topic model the SWB model
can explain words in three different ways, via topics, via a special word distribution, or via a back-
ground word distribution. Given the graphical model above, it is relatively straightforward to derive
Gibbs sampling equations that allow joint sampling of the zi and xi latent variables for each word
token wi, for xi = 0:

p (xi = 0, zi = t |w,x−i, z−i, α, β0, γ ) ∝ Nd0,−i + γ

Nd,−i + 3γ
×

CTD
td,−i + α∑

t′ CTD
t′d,−i + Tα

×
CWT

wt,−i + β0∑
w′ CWT

w′t,−i + Wβ0

and for xi = 1:

p (xi = 1 |w,x−i, z−i, β1, γ ) ∝ Nd1,−i + γ

Nd,−i + 3γ
×

CWD
wd,−i + β1∑

w′ CWD
w′d,−i + Wβ1

McCallum, Wang, & Corrada-Emmanuel
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Latent Dirichlet Allocation

(LDA)
[Blei, Ng, Jordan, 2003]
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[Rosen-Zvi, Griffiths, Steyvers, Smyth 2004]
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[This paper]
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(Multi-label Mixture Model)
[McCallum 1999]
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, φz, specific to a particular
topic/author, z, however topics are selected differently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, θ, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, θ, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution θx that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution φz. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite different. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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Figure 1: The composite model. (a) Graphical model. (b) Generating phrases.

φ(z), each class c != 1 is associated with a distribution over words φ(c), each document

d has a distribution over topics θ(d), and transitions between classes ci−1 and ci follow a

distribution π(si−1). A document is generated via the following procedure:

1. Sample θ(d) from a Dirichlet(α) prior

2. For each word wi in document d

(a) Draw zi from θ(d)

(b) Draw ci from π(ci−1)

(c) If ci = 1, then draw wi from φ(zi), else draw wi from φ(ci)

Figure 1(b) provides an intuitive representation of how phrases are generated by the com-
posite model. The figure shows a three class HMM. Two classes are simple multinomial
distributions over words. The third is a topic model, containing three topics. Transitions
between classes are shown with arrows, annotated with transition probabilities. The top-
ics in the semantic class also have probabilities, used to choose a topic when the HMM
transitions to the semantic class. Phrases are generated by following a path through the
model, choosing a word from the distribution associated with each syntactic class, and a
topic followed by a word from the distribution associated with that topic for the seman-
tic class. Sentences with the same syntax but different content would be generated if the
topic distribution were different. The generative model thus acts like it is playing a game
of “Madlibs”: the semantic component provides a list of topical words (shown in black)
which are slotted into templates generated by the syntactic component (shown in gray).

2.2 Inference

The EM algorithm can be applied to the graphical model shown in Figure 1, treating the
document distributions θ, the topics and classes φ, and the transition probabilities π as
parameters. However, EM produces poor results with topic models, which have many pa-
rameters and many local maxima. Consequently, recent work has focused on approximate
inference algorithms [6, 8]. We will use Markov chain Monte Carlo (MCMC; see [9]) to
perform full Bayesian inference in this model, sampling from a posterior distribution over
assignments of words to classes and topics.

We assume that the document-specific distributions over topics, θ, are drawn from a

Dirichlet(α) distribution, the topic distributions φ(z) are drawn from a Dirichlet(β) dis-
tribution, the rows of the transition matrix for the HMM are drawn from a Dirichlet(γ)
distribution, the class distributions φ(c) are drawn from a Dirichlet(δ) distribution, and all
Dirichlet distributions are symmetric. We use Gibbs sampling to draw iteratively a topic
assignment zi and class assignment ci for each word wi in the corpus (see [8, 9]).

Given the words w, the class assignments c, the other topic assignments z−i, and the
hyperparameters, each zi is drawn from:

P (zi|z−i, c,w) ∝ P (zi|z−i) P (wi|z, c,w−i)

∝
{

n
(di)
zi + α

(n(di)
zi + α)

n
(zi)
wi

+β

n(zi)+Wβ

ci != 1
ci = 1

constraints of word alignment, i.e., words “close-in-source” are usually aligned to words “close-in-
target”, under document-specific topical assignment. To incorporate such constituents, we integrate
the strengths of both HMM and BiTAM, and propose a Hidden Markov Bilingual Topic-AdMixture
model, or HM-BiTAM, for word alignment to leverage both locality constraints and topical context
underlying parallel document-pairs.

In the HM-BiTAM framework, one can estimate topic-specific word-to-word translation lexicons
(lexical mappings), as well as the monolingual topic-specific word-frequencies for both languages,
based on parallel document-pairs. The resulting model offers a principled way of inferring optimal
translation from a given source language in a context-dependent fashion. We report an extensive
empirical analysis of HM-BiTAM, in comparison with related methods. We show our model’s ef-
fectiveness on the word-alignment task; we also demonstrate two application aspects which were
untouched in [10]: the utility of HM-BiTAM for bilingual topic exploration, and its application for
improving translation qualities.

2 Revisit HMM for SMT

An SMT system can be formulated as a noisy-channel model [2]:

e∗ = arg max
e

P (e|f) = arg max
e

P (f |e)P (e), (1)

where a translation corresponds to searching for the target sentence e∗ which explains the source
sentence f best. The key component is P (f |e), the translation model; P (e) is monolingual language
model. In this paper, we generalize P (f |e) with topic-admixture models.

An HMM implements the “proximity-bias” assumption — that words “close-in-source” are aligned
to words “close-in-target”, which is effective for improving word alignment accuracies, especially
for linguistically close language-pairs [8]. Following [8], to model word-to-word translation, we
introduce the mapping j → aj , which assigns a French word fj in position j to an English word
ei in position i = aj denoted as eaj . Each (ordered) French word fj is an observation, and it is
generated by an HMM state defined as [eaj

, aj], where the alignment indicator aj for position j is
considered to have a dependency on the previous alignment aj−1. Thus a first-order HMM for an
alignment between e ≡ e1:I and f ≡ f1:J is defined as:

p(f1:J |e1:I) =
∑

a1:J

J∏

j=1

p(fj |eaj
)p(aj |aj−1), (2)

where p(aj |aj−1) is the state transition probability; J and I are sentence lengths of the French and
English sentences, respectively. The transition model enforces the proximity-bias. An additional
pseudo word ”NULL” is used at the beginning of English sentences for HMM to start with. The
HMM implemented in GIZA++ [5] is used as our baseline, which includes refinements such as
special treatment of a jump to a NULL word. A graphical model representation for such an HMM
is illustrated in Figure 1 (a).
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Figure 1: The graphical model representations of (a) HMM, and (b) HM-BiTAM, for parallel corpora. Circles
represent random variables, hexagons denote parameters, and observed variables are shaded.

2• LDA can be embedded in more complicated models, embodying
further intuitions about the structure of the texts.

• E.g., syntax; authorship; word sense; dynamics; correlation;
hierarchies; nonparametric Bayes

D. Blei Topic Models



LDA is modular, general, useful

Dynamic Topic Models

ways, and quantitative results that demonstrate greater pre-

dictive accuracy when compared with static topic models.

2. Dynamic Topic Models

While traditional time series modeling has focused on con-

tinuous data, topic models are designed for categorical

data. Our approach is to use state space models on the nat-

ural parameter space of the underlying topic multinomials,

as well as on the natural parameters for the logistic nor-

mal distributions used for modeling the document-specific

topic proportions.

First, we review the underlying statistical assumptions of

a static topic model, such as latent Dirichlet allocation

(LDA) (Blei et al., 2003). Let β1:K be K topics, each of

which is a distribution over a fixed vocabulary. In a static

topic model, each document is assumed drawn from the

following generative process:

1. Choose topic proportions θ from a distribution over

the (K − 1)-simplex, such as a Dirichlet.

2. For each word:

(a) Choose a topic assignment Z ∼ Mult(θ).

(b) Choose a wordW ∼ Mult(βz).

This process implicitly assumes that the documents are

drawn exchangeably from the same set of topics. For many

collections, however, the order of the documents reflects

an evolving set of topics. In a dynamic topic model, we

suppose that the data is divided by time slice, for example

by year. We model the documents of each slice with a K-
component topic model, where the topics associated with

slice t evolve from the topics associated with slice t − 1.

For a K-component model with V terms, let βt,k denote

the V -vector of natural parameters for topic k in slice t.
The usual representation of a multinomial distribution is by

its mean parameterization. If we denote the mean param-

eter of a V -dimensional multinomial by π, the ith com-
ponent of the natural parameter is given by the mapping

βi = log(πi/πV ). In typical language modeling applica-
tions, Dirichlet distributions are used to model uncertainty

about the distributions over words. However, the Dirichlet

is not amenable to sequential modeling. Instead, we chain

the natural parameters of each topic βt,k in a state space

model that evolves with Gaussian noise; the simplest ver-

sion of such a model is

βt,k |βt−1,k ∼ N (βt−1,k,σ2I) . (1)

Our approach is thus to model sequences of compositional

random variables by chaining Gaussian distributions in a

dynamic model and mapping the emitted values to the sim-

plex. This is an extension of the logistic normal distribu-

A A A

θθθ

zzz

ααα

β ββ

w w w

N N N

K

Figure 1. Graphical representation of a dynamic topic model (for

three time slices). Each topic’s natural parameters βt,k evolve

over time, together with the mean parameters αt of the logistic

normal distribution for the topic proportions.

tion (Aitchison, 1982) to time-series simplex data (West

and Harrison, 1997).

In LDA, the document-specific topic proportions θ are

drawn from a Dirichlet distribution. In the dynamic topic

model, we use a logistic normal with mean α to express

uncertainty over proportions. The sequential structure be-

tween models is again captured with a simple dynamic

model

αt |αt−1 ∼ N (αt−1, δ
2I) . (2)

For simplicity, we do not model the dynamics of topic cor-

relation, as was done for static models by Blei and Lafferty

(2006).

By chaining together topics and topic proportion distribu-

tions, we have sequentially tied a collection of topic mod-

els. The generative process for slice t of a sequential corpus
is thus as follows:

1. Draw topics βt |βt−1 ∼ N (βt−1,σ2I).

2. Draw αt |αt−1 ∼ N (αt−1, δ2I).

3. For each document:

(a) Draw η ∼ N (αt, a2I)

(b) For each word:

i. Draw Z ∼ Mult(π(η)).

ii. DrawWt,d,n ∼ Mult(π(βt,z)).

Note that π maps the multinomial natural parameters to the

mean parameters, π(βk,t)w = exp(βk,t,w)
P

w exp(βk,t,w) .

The graphical model for this generative process is shown in

Figure 1. When the horizontal arrows are removed, break-

ing the time dynamics, the graphical model reduces to a set

of independent topic models. With time dynamics, the kth
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Figure 5: Modeling community with topics

sider the conditional probability P (c, u, z|ω), a word ω as-
sociates three variables: community, user and topic. Our
interpretation of the semantic meaning of P (c, u, z|ω) is
the probability that word ω is generated by user u under
topic z, in community c.

Unfortunately, this conditional probability cannot be com-
puted directly. To get P (c, u, z|ω) ,we have:

P (c, u, z|ω) =
P (c, u, z, ω)

Σc,u,zP (c, u, z, ω)
(3)

Consider the denominator in Eq. 3, summing over all c,
u and z makes the computation impractical in terms of ef-
ficiency. In addition, as shown in [7], the summing doesn’t
factorize, which makes the manipulation of denominator
difficult. In the following section, we will show how an
approximate approach of Gibbs sampling will provide so-
lutions to such problems. A faster algorithm EnF-Gibbs
sampling will also be introduced.

4. SEMANTICCOMMUNITYDISCOVERY:
THE ALGORITHMS

In this section, we first introduce the Gibbs sampling
algorithm. Then we address the problem of semantic com-
munity discovery by adapting Gibbs sampling framework
to our models. Finally, we combine two powerful ideas:
Gibbs sampling and entropy filtering to improve efficiency
and performance, yielding a new algorithm: EnF-Gibbs
sampling.

4.1 Gibbs sampling
Gibbs sampling is an algorithm to approximate the joint

distribution of multiple variables by drawing a sequence
of samples. As a special case of the Metropolis-Hastings
algorithm [18], Gibbs sampling is a Markov chain Monte
Carlo algorithm and usually applies when the conditional
probability distribution of each variable can be evaluated.
Rather than explicitly parameterizing the distributions for
variables, Gibbs sampling integrates out the parameters
and estimates the corresponding posterior probability.

Gibbs sampling was first introduced to estimate the Topic-
Word model in [7]. In Gibbs sampling, a Markov chain is
formed, the transition between successive states of which
is simulated by repeatedly drawing a topic for each ob-
served word from its conditional probability on all other
variables. In the Author-Topic model, the algorithm goes
over all documents word by word. For each word ωi, the

topic zi and the author xi responsible for this word are
assigned based on the posterior probability conditioned on
all other variables: P (zi, xi|ωi, z−i, x−i,w−i,ad). zi and
xi denote the topic and author assigned to ωi, while z−i

and x−i are all other assignments of topic and author ex-
cluding current instance. w−i represents other observed
words in the document set and ad is the observed author
set for this document.

A key issue in using Gibbs sampling for distribution
approximation is the evaluation of conditional posterior
probability. In Author-Topic model, given T topics and V
words, P (zi, xi|ωi, z−i,x−i,w−i, ad) is estimated by:

P (zi = j, xi = k|ωi = m, z−i,x−i,w−i,ad) ∝ (4)

P (ωi = m|xi = k)P (xi = k|zi = j) ∝ (5)

CWT
mj + β

Σm′CWT
m′j + V β

CAT
kj + α

Σj′CAT
kj′ + Tα

(6)

where m′ "= m and j′ "= j, α and β are prior parameters
for word and topic Dirichlets, CWT

mj represents the number
of times that word ωi = m is assigned to topic zi = j,
CAT

kj represents the number of times that author xi = k is
assigned to topic j.

The transformation from Eq. 4 to Eq. 5 drops the vari-
ables, z−i, x−i, w−i, ad, because each instance of ωi is
assumed independent of the other words in a message.

4.2 Semantic community discovery
By applying the Gibbs sampling, we can discover the se-

mantic communities by using the CUT models. Consider
the conditional probability P (c, u, z|ω), where three vari-
ables in the model, community, user4 and topic, are asso-
ciated by a word ω. The semantic meaning of P (c, u, z|ω)
is the probability that ω belongs to user u under topic z,
in community c. By estimation of P (c, u, z|ω), we can la-
bel a community with semantic tags (topics) in addition to
the affiliated users. The problem of semantic community
discovery is thus reduced to the estimation of P (c, u, z|ω).

(1) /* Initialization */
(2) for each email d
(3) for each word ωi in d
(4) assign ωi to random community, topic and user;
(5) /* user in the list observed from d */
(6) /* Markov chain convergence */
(7) i← 0;
(8) I ← desired number of iterations;
(9) while i < I
(10) for each email d
(11) for each ωi ∈ d
(12) estimate P (ci, ui, zi|ωi), u ∈ αd;
(13) (p, q, r)← argmax(P (cp, uq , zr|ωi));
(14) /*assign community p,user q, topic r to ωi*/
(15) record assignment τ (cp, uq , zr, ωi);
(16) i + +;

Figure 6: Gibbs sampling for CUT models

4Note we denote user with u in our models instead of x as
in previous work.
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Figure 1: Graphical models for (a) the standard LDA topic model (left) and (b) the proposed special
words topic model with a background distribution (SWB) (right).

are generated by drawing a topic t from the document-topic distribution p(z|θd) and then drawing
a word w from the topic-word distribution p(w|z = t, φt). As shown in Griffiths and Steyvers
(2004) the topic assignments z for each word token in the corpus can be efficiently sampled via
Gibbs sampling (after marginalizing over θ and φ). Point estimates for the θ and φ distributions
can be computed conditioned on a particular sample, and predictive distributions can be obtained by
averaging over multiple samples.

We will refer to the proposed model as the special words topic model with background distribution
(SWB) (Figure 1(b)). SWB has a similar general structure to the LDA model (Figure 1(a)) but with
additional machinery to handle special words and background words. In particular, associated with
each word token is a latent random variable x, taking value x = 0 if the word w is generated via
the topic route, value x = 1 if the word is generated as a special word (for that document) and
value x = 2 if the word is generated from a background distribution specific for the corpus. The
variable x acts as a switch: if x = 0, the previously described standard topic mechanism is used
to generate the word, whereas if x = 1 or x = 2, words are sampled from a document-specific
multinomialΨ or a corpus specific multinomialΩ (with symmetric Dirichlet priors parametrized by
β1 and β2) respectively. x is sampled from a document-specific multinomial λ, which in turn has
a symmetric Dirichlet prior, γ. One could also use a hierarchical Bayesian approach to introduce
another level of uncertainty about the Dirichlet priors (e.g., see Blei, Ng, and Jordan, 2003)—we
have not investigated this option, primarily for computational reasons. In all our experiments, we
set α = 0.1, β0 = β2 = 0.01, β1 = 0.0001 and γ = 0.3—all weak symmetric priors.

The conditional probability of a word w given a document d can be written as:

p(w|d) = p(x = 0|d)
T∑

t=1

p(w|z = t)p(z = t|d) + p(x = 1|d)p′(w|d) + p(x = 2|d)p′′(w)

where p′(w|d) is the special word distribution for document d, and p′′(w) is the background word
distribution for the corpus. Note that when compared to the standard topic model the SWB model
can explain words in three different ways, via topics, via a special word distribution, or via a back-
ground word distribution. Given the graphical model above, it is relatively straightforward to derive
Gibbs sampling equations that allow joint sampling of the zi and xi latent variables for each word
token wi, for xi = 0:

p (xi = 0, zi = t |w,x−i, z−i, α, β0, γ ) ∝ Nd0,−i + γ

Nd,−i + 3γ
×

CTD
td,−i + α∑

t′ CTD
t′d,−i + Tα

×
CWT

wt,−i + β0∑
w′ CWT

w′t,−i + Wβ0

and for xi = 1:

p (xi = 1 |w,x−i, z−i, β1, γ ) ∝ Nd1,−i + γ

Nd,−i + 3γ
×

CWD
wd,−i + β1∑

w′ CWD
w′d,−i + Wβ1

McCallum, Wang, & Corrada-Emmanuel
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, φz, specific to a particular
topic/author, z, however topics are selected differently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, θ, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, θ, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution θx that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution φz. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite different. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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Figure 1: The composite model. (a) Graphical model. (b) Generating phrases.

φ(z), each class c != 1 is associated with a distribution over words φ(c), each document

d has a distribution over topics θ(d), and transitions between classes ci−1 and ci follow a

distribution π(si−1). A document is generated via the following procedure:

1. Sample θ(d) from a Dirichlet(α) prior

2. For each word wi in document d

(a) Draw zi from θ(d)

(b) Draw ci from π(ci−1)

(c) If ci = 1, then draw wi from φ(zi), else draw wi from φ(ci)

Figure 1(b) provides an intuitive representation of how phrases are generated by the com-
posite model. The figure shows a three class HMM. Two classes are simple multinomial
distributions over words. The third is a topic model, containing three topics. Transitions
between classes are shown with arrows, annotated with transition probabilities. The top-
ics in the semantic class also have probabilities, used to choose a topic when the HMM
transitions to the semantic class. Phrases are generated by following a path through the
model, choosing a word from the distribution associated with each syntactic class, and a
topic followed by a word from the distribution associated with that topic for the seman-
tic class. Sentences with the same syntax but different content would be generated if the
topic distribution were different. The generative model thus acts like it is playing a game
of “Madlibs”: the semantic component provides a list of topical words (shown in black)
which are slotted into templates generated by the syntactic component (shown in gray).

2.2 Inference

The EM algorithm can be applied to the graphical model shown in Figure 1, treating the
document distributions θ, the topics and classes φ, and the transition probabilities π as
parameters. However, EM produces poor results with topic models, which have many pa-
rameters and many local maxima. Consequently, recent work has focused on approximate
inference algorithms [6, 8]. We will use Markov chain Monte Carlo (MCMC; see [9]) to
perform full Bayesian inference in this model, sampling from a posterior distribution over
assignments of words to classes and topics.

We assume that the document-specific distributions over topics, θ, are drawn from a

Dirichlet(α) distribution, the topic distributions φ(z) are drawn from a Dirichlet(β) dis-
tribution, the rows of the transition matrix for the HMM are drawn from a Dirichlet(γ)
distribution, the class distributions φ(c) are drawn from a Dirichlet(δ) distribution, and all
Dirichlet distributions are symmetric. We use Gibbs sampling to draw iteratively a topic
assignment zi and class assignment ci for each word wi in the corpus (see [8, 9]).

Given the words w, the class assignments c, the other topic assignments z−i, and the
hyperparameters, each zi is drawn from:

P (zi|z−i, c,w) ∝ P (zi|z−i) P (wi|z, c,w−i)

∝
{

n
(di)
zi + α

(n(di)
zi + α)

n
(zi)
wi

+β

n(zi)+Wβ

ci != 1
ci = 1

constraints of word alignment, i.e., words “close-in-source” are usually aligned to words “close-in-
target”, under document-specific topical assignment. To incorporate such constituents, we integrate
the strengths of both HMM and BiTAM, and propose a Hidden Markov Bilingual Topic-AdMixture
model, or HM-BiTAM, for word alignment to leverage both locality constraints and topical context
underlying parallel document-pairs.

In the HM-BiTAM framework, one can estimate topic-specific word-to-word translation lexicons
(lexical mappings), as well as the monolingual topic-specific word-frequencies for both languages,
based on parallel document-pairs. The resulting model offers a principled way of inferring optimal
translation from a given source language in a context-dependent fashion. We report an extensive
empirical analysis of HM-BiTAM, in comparison with related methods. We show our model’s ef-
fectiveness on the word-alignment task; we also demonstrate two application aspects which were
untouched in [10]: the utility of HM-BiTAM for bilingual topic exploration, and its application for
improving translation qualities.

2 Revisit HMM for SMT

An SMT system can be formulated as a noisy-channel model [2]:

e∗ = arg max
e

P (e|f) = arg max
e

P (f |e)P (e), (1)

where a translation corresponds to searching for the target sentence e∗ which explains the source
sentence f best. The key component is P (f |e), the translation model; P (e) is monolingual language
model. In this paper, we generalize P (f |e) with topic-admixture models.

An HMM implements the “proximity-bias” assumption — that words “close-in-source” are aligned
to words “close-in-target”, which is effective for improving word alignment accuracies, especially
for linguistically close language-pairs [8]. Following [8], to model word-to-word translation, we
introduce the mapping j → aj , which assigns a French word fj in position j to an English word
ei in position i = aj denoted as eaj . Each (ordered) French word fj is an observation, and it is
generated by an HMM state defined as [eaj

, aj], where the alignment indicator aj for position j is
considered to have a dependency on the previous alignment aj−1. Thus a first-order HMM for an
alignment between e ≡ e1:I and f ≡ f1:J is defined as:

p(f1:J |e1:I) =
∑

a1:J

J∏

j=1

p(fj |eaj
)p(aj |aj−1), (2)

where p(aj |aj−1) is the state transition probability; J and I are sentence lengths of the French and
English sentences, respectively. The transition model enforces the proximity-bias. An additional
pseudo word ”NULL” is used at the beginning of English sentences for HMM to start with. The
HMM implemented in GIZA++ [5] is used as our baseline, which includes refinements such as
special treatment of a jump to a NULL word. A graphical model representation for such an HMM
is illustrated in Figure 1 (a).
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(a) HMM for Word Alignment (b) HM-BiTAM

Figure 1: The graphical model representations of (a) HMM, and (b) HM-BiTAM, for parallel corpora. Circles
represent random variables, hexagons denote parameters, and observed variables are shaded.

2• The data generating distribution can be changed.

• E.g., images, social networks, music, purchase histories, computer
code, genetic data, click-through data; ...
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LDA is modular, general, useful

Dynamic Topic Models

ways, and quantitative results that demonstrate greater pre-

dictive accuracy when compared with static topic models.

2. Dynamic Topic Models

While traditional time series modeling has focused on con-

tinuous data, topic models are designed for categorical

data. Our approach is to use state space models on the nat-

ural parameter space of the underlying topic multinomials,

as well as on the natural parameters for the logistic nor-

mal distributions used for modeling the document-specific

topic proportions.

First, we review the underlying statistical assumptions of

a static topic model, such as latent Dirichlet allocation

(LDA) (Blei et al., 2003). Let β1:K be K topics, each of

which is a distribution over a fixed vocabulary. In a static

topic model, each document is assumed drawn from the

following generative process:

1. Choose topic proportions θ from a distribution over

the (K − 1)-simplex, such as a Dirichlet.

2. For each word:

(a) Choose a topic assignment Z ∼ Mult(θ).

(b) Choose a wordW ∼ Mult(βz).

This process implicitly assumes that the documents are

drawn exchangeably from the same set of topics. For many

collections, however, the order of the documents reflects

an evolving set of topics. In a dynamic topic model, we

suppose that the data is divided by time slice, for example

by year. We model the documents of each slice with a K-
component topic model, where the topics associated with

slice t evolve from the topics associated with slice t − 1.

For a K-component model with V terms, let βt,k denote

the V -vector of natural parameters for topic k in slice t.
The usual representation of a multinomial distribution is by

its mean parameterization. If we denote the mean param-

eter of a V -dimensional multinomial by π, the ith com-
ponent of the natural parameter is given by the mapping

βi = log(πi/πV ). In typical language modeling applica-
tions, Dirichlet distributions are used to model uncertainty

about the distributions over words. However, the Dirichlet

is not amenable to sequential modeling. Instead, we chain

the natural parameters of each topic βt,k in a state space

model that evolves with Gaussian noise; the simplest ver-

sion of such a model is

βt,k |βt−1,k ∼ N (βt−1,k,σ2I) . (1)

Our approach is thus to model sequences of compositional

random variables by chaining Gaussian distributions in a

dynamic model and mapping the emitted values to the sim-

plex. This is an extension of the logistic normal distribu-

A A A

θθθ

zzz

ααα

β ββ

w w w

N N N

K

Figure 1. Graphical representation of a dynamic topic model (for

three time slices). Each topic’s natural parameters βt,k evolve

over time, together with the mean parameters αt of the logistic

normal distribution for the topic proportions.

tion (Aitchison, 1982) to time-series simplex data (West

and Harrison, 1997).

In LDA, the document-specific topic proportions θ are

drawn from a Dirichlet distribution. In the dynamic topic

model, we use a logistic normal with mean α to express

uncertainty over proportions. The sequential structure be-

tween models is again captured with a simple dynamic

model

αt |αt−1 ∼ N (αt−1, δ
2I) . (2)

For simplicity, we do not model the dynamics of topic cor-

relation, as was done for static models by Blei and Lafferty

(2006).

By chaining together topics and topic proportion distribu-

tions, we have sequentially tied a collection of topic mod-

els. The generative process for slice t of a sequential corpus
is thus as follows:

1. Draw topics βt |βt−1 ∼ N (βt−1,σ2I).

2. Draw αt |αt−1 ∼ N (αt−1, δ2I).

3. For each document:

(a) Draw η ∼ N (αt, a2I)

(b) For each word:

i. Draw Z ∼ Mult(π(η)).

ii. DrawWt,d,n ∼ Mult(π(βt,z)).

Note that π maps the multinomial natural parameters to the

mean parameters, π(βk,t)w = exp(βk,t,w)
P

w exp(βk,t,w) .

The graphical model for this generative process is shown in

Figure 1. When the horizontal arrows are removed, break-

ing the time dynamics, the graphical model reduces to a set

of independent topic models. With time dynamics, the kth
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Figure 5: Modeling community with topics

sider the conditional probability P (c, u, z|ω), a word ω as-
sociates three variables: community, user and topic. Our
interpretation of the semantic meaning of P (c, u, z|ω) is
the probability that word ω is generated by user u under
topic z, in community c.

Unfortunately, this conditional probability cannot be com-
puted directly. To get P (c, u, z|ω) ,we have:

P (c, u, z|ω) =
P (c, u, z, ω)

Σc,u,zP (c, u, z, ω)
(3)

Consider the denominator in Eq. 3, summing over all c,
u and z makes the computation impractical in terms of ef-
ficiency. In addition, as shown in [7], the summing doesn’t
factorize, which makes the manipulation of denominator
difficult. In the following section, we will show how an
approximate approach of Gibbs sampling will provide so-
lutions to such problems. A faster algorithm EnF-Gibbs
sampling will also be introduced.

4. SEMANTICCOMMUNITYDISCOVERY:
THE ALGORITHMS

In this section, we first introduce the Gibbs sampling
algorithm. Then we address the problem of semantic com-
munity discovery by adapting Gibbs sampling framework
to our models. Finally, we combine two powerful ideas:
Gibbs sampling and entropy filtering to improve efficiency
and performance, yielding a new algorithm: EnF-Gibbs
sampling.

4.1 Gibbs sampling
Gibbs sampling is an algorithm to approximate the joint

distribution of multiple variables by drawing a sequence
of samples. As a special case of the Metropolis-Hastings
algorithm [18], Gibbs sampling is a Markov chain Monte
Carlo algorithm and usually applies when the conditional
probability distribution of each variable can be evaluated.
Rather than explicitly parameterizing the distributions for
variables, Gibbs sampling integrates out the parameters
and estimates the corresponding posterior probability.

Gibbs sampling was first introduced to estimate the Topic-
Word model in [7]. In Gibbs sampling, a Markov chain is
formed, the transition between successive states of which
is simulated by repeatedly drawing a topic for each ob-
served word from its conditional probability on all other
variables. In the Author-Topic model, the algorithm goes
over all documents word by word. For each word ωi, the

topic zi and the author xi responsible for this word are
assigned based on the posterior probability conditioned on
all other variables: P (zi, xi|ωi, z−i, x−i,w−i,ad). zi and
xi denote the topic and author assigned to ωi, while z−i

and x−i are all other assignments of topic and author ex-
cluding current instance. w−i represents other observed
words in the document set and ad is the observed author
set for this document.

A key issue in using Gibbs sampling for distribution
approximation is the evaluation of conditional posterior
probability. In Author-Topic model, given T topics and V
words, P (zi, xi|ωi, z−i,x−i,w−i, ad) is estimated by:

P (zi = j, xi = k|ωi = m, z−i,x−i,w−i,ad) ∝ (4)

P (ωi = m|xi = k)P (xi = k|zi = j) ∝ (5)

CWT
mj + β

Σm′CWT
m′j + V β

CAT
kj + α

Σj′CAT
kj′ + Tα

(6)

where m′ "= m and j′ "= j, α and β are prior parameters
for word and topic Dirichlets, CWT

mj represents the number
of times that word ωi = m is assigned to topic zi = j,
CAT

kj represents the number of times that author xi = k is
assigned to topic j.

The transformation from Eq. 4 to Eq. 5 drops the vari-
ables, z−i, x−i, w−i, ad, because each instance of ωi is
assumed independent of the other words in a message.

4.2 Semantic community discovery
By applying the Gibbs sampling, we can discover the se-

mantic communities by using the CUT models. Consider
the conditional probability P (c, u, z|ω), where three vari-
ables in the model, community, user4 and topic, are asso-
ciated by a word ω. The semantic meaning of P (c, u, z|ω)
is the probability that ω belongs to user u under topic z,
in community c. By estimation of P (c, u, z|ω), we can la-
bel a community with semantic tags (topics) in addition to
the affiliated users. The problem of semantic community
discovery is thus reduced to the estimation of P (c, u, z|ω).

(1) /* Initialization */
(2) for each email d
(3) for each word ωi in d
(4) assign ωi to random community, topic and user;
(5) /* user in the list observed from d */
(6) /* Markov chain convergence */
(7) i← 0;
(8) I ← desired number of iterations;
(9) while i < I
(10) for each email d
(11) for each ωi ∈ d
(12) estimate P (ci, ui, zi|ωi), u ∈ αd;
(13) (p, q, r)← argmax(P (cp, uq , zr|ωi));
(14) /*assign community p,user q, topic r to ωi*/
(15) record assignment τ (cp, uq , zr, ωi);
(16) i + +;

Figure 6: Gibbs sampling for CUT models

4Note we denote user with u in our models instead of x as
in previous work.

177

z

w

D

!

"

#

$

T d
N

z

w

D

!

0"

#

$

T
d

N

%

2"

x

&

'1
"

(

(a) (b)

Figure 1: Graphical models for (a) the standard LDA topic model (left) and (b) the proposed special
words topic model with a background distribution (SWB) (right).

are generated by drawing a topic t from the document-topic distribution p(z|θd) and then drawing
a word w from the topic-word distribution p(w|z = t, φt). As shown in Griffiths and Steyvers
(2004) the topic assignments z for each word token in the corpus can be efficiently sampled via
Gibbs sampling (after marginalizing over θ and φ). Point estimates for the θ and φ distributions
can be computed conditioned on a particular sample, and predictive distributions can be obtained by
averaging over multiple samples.

We will refer to the proposed model as the special words topic model with background distribution
(SWB) (Figure 1(b)). SWB has a similar general structure to the LDA model (Figure 1(a)) but with
additional machinery to handle special words and background words. In particular, associated with
each word token is a latent random variable x, taking value x = 0 if the word w is generated via
the topic route, value x = 1 if the word is generated as a special word (for that document) and
value x = 2 if the word is generated from a background distribution specific for the corpus. The
variable x acts as a switch: if x = 0, the previously described standard topic mechanism is used
to generate the word, whereas if x = 1 or x = 2, words are sampled from a document-specific
multinomialΨ or a corpus specific multinomialΩ (with symmetric Dirichlet priors parametrized by
β1 and β2) respectively. x is sampled from a document-specific multinomial λ, which in turn has
a symmetric Dirichlet prior, γ. One could also use a hierarchical Bayesian approach to introduce
another level of uncertainty about the Dirichlet priors (e.g., see Blei, Ng, and Jordan, 2003)—we
have not investigated this option, primarily for computational reasons. In all our experiments, we
set α = 0.1, β0 = β2 = 0.01, β1 = 0.0001 and γ = 0.3—all weak symmetric priors.

The conditional probability of a word w given a document d can be written as:

p(w|d) = p(x = 0|d)
T∑

t=1

p(w|z = t)p(z = t|d) + p(x = 1|d)p′(w|d) + p(x = 2|d)p′′(w)

where p′(w|d) is the special word distribution for document d, and p′′(w) is the background word
distribution for the corpus. Note that when compared to the standard topic model the SWB model
can explain words in three different ways, via topics, via a special word distribution, or via a back-
ground word distribution. Given the graphical model above, it is relatively straightforward to derive
Gibbs sampling equations that allow joint sampling of the zi and xi latent variables for each word
token wi, for xi = 0:

p (xi = 0, zi = t |w,x−i, z−i, α, β0, γ ) ∝ Nd0,−i + γ

Nd,−i + 3γ
×

CTD
td,−i + α∑

t′ CTD
t′d,−i + Tα

×
CWT

wt,−i + β0∑
w′ CWT

w′t,−i + Wβ0

and for xi = 1:

p (xi = 1 |w,x−i, z−i, β1, γ ) ∝ Nd1,−i + γ

Nd,−i + 3γ
×

CWD
wd,−i + β1∑

w′ CWD
w′d,−i + Wβ1
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, φz, specific to a particular
topic/author, z, however topics are selected differently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, θ, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, θ, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution θx that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution φz. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite different. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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Figure 1: The composite model. (a) Graphical model. (b) Generating phrases.

φ(z), each class c != 1 is associated with a distribution over words φ(c), each document

d has a distribution over topics θ(d), and transitions between classes ci−1 and ci follow a

distribution π(si−1). A document is generated via the following procedure:

1. Sample θ(d) from a Dirichlet(α) prior

2. For each word wi in document d

(a) Draw zi from θ(d)

(b) Draw ci from π(ci−1)

(c) If ci = 1, then draw wi from φ(zi), else draw wi from φ(ci)

Figure 1(b) provides an intuitive representation of how phrases are generated by the com-
posite model. The figure shows a three class HMM. Two classes are simple multinomial
distributions over words. The third is a topic model, containing three topics. Transitions
between classes are shown with arrows, annotated with transition probabilities. The top-
ics in the semantic class also have probabilities, used to choose a topic when the HMM
transitions to the semantic class. Phrases are generated by following a path through the
model, choosing a word from the distribution associated with each syntactic class, and a
topic followed by a word from the distribution associated with that topic for the seman-
tic class. Sentences with the same syntax but different content would be generated if the
topic distribution were different. The generative model thus acts like it is playing a game
of “Madlibs”: the semantic component provides a list of topical words (shown in black)
which are slotted into templates generated by the syntactic component (shown in gray).

2.2 Inference

The EM algorithm can be applied to the graphical model shown in Figure 1, treating the
document distributions θ, the topics and classes φ, and the transition probabilities π as
parameters. However, EM produces poor results with topic models, which have many pa-
rameters and many local maxima. Consequently, recent work has focused on approximate
inference algorithms [6, 8]. We will use Markov chain Monte Carlo (MCMC; see [9]) to
perform full Bayesian inference in this model, sampling from a posterior distribution over
assignments of words to classes and topics.

We assume that the document-specific distributions over topics, θ, are drawn from a

Dirichlet(α) distribution, the topic distributions φ(z) are drawn from a Dirichlet(β) dis-
tribution, the rows of the transition matrix for the HMM are drawn from a Dirichlet(γ)
distribution, the class distributions φ(c) are drawn from a Dirichlet(δ) distribution, and all
Dirichlet distributions are symmetric. We use Gibbs sampling to draw iteratively a topic
assignment zi and class assignment ci for each word wi in the corpus (see [8, 9]).

Given the words w, the class assignments c, the other topic assignments z−i, and the
hyperparameters, each zi is drawn from:

P (zi|z−i, c,w) ∝ P (zi|z−i) P (wi|z, c,w−i)

∝
{

n
(di)
zi + α

(n(di)
zi + α)

n
(zi)
wi

+β

n(zi)+Wβ

ci != 1
ci = 1

constraints of word alignment, i.e., words “close-in-source” are usually aligned to words “close-in-
target”, under document-specific topical assignment. To incorporate such constituents, we integrate
the strengths of both HMM and BiTAM, and propose a Hidden Markov Bilingual Topic-AdMixture
model, or HM-BiTAM, for word alignment to leverage both locality constraints and topical context
underlying parallel document-pairs.

In the HM-BiTAM framework, one can estimate topic-specific word-to-word translation lexicons
(lexical mappings), as well as the monolingual topic-specific word-frequencies for both languages,
based on parallel document-pairs. The resulting model offers a principled way of inferring optimal
translation from a given source language in a context-dependent fashion. We report an extensive
empirical analysis of HM-BiTAM, in comparison with related methods. We show our model’s ef-
fectiveness on the word-alignment task; we also demonstrate two application aspects which were
untouched in [10]: the utility of HM-BiTAM for bilingual topic exploration, and its application for
improving translation qualities.

2 Revisit HMM for SMT

An SMT system can be formulated as a noisy-channel model [2]:

e∗ = arg max
e

P (e|f) = arg max
e

P (f |e)P (e), (1)

where a translation corresponds to searching for the target sentence e∗ which explains the source
sentence f best. The key component is P (f |e), the translation model; P (e) is monolingual language
model. In this paper, we generalize P (f |e) with topic-admixture models.

An HMM implements the “proximity-bias” assumption — that words “close-in-source” are aligned
to words “close-in-target”, which is effective for improving word alignment accuracies, especially
for linguistically close language-pairs [8]. Following [8], to model word-to-word translation, we
introduce the mapping j → aj , which assigns a French word fj in position j to an English word
ei in position i = aj denoted as eaj . Each (ordered) French word fj is an observation, and it is
generated by an HMM state defined as [eaj

, aj], where the alignment indicator aj for position j is
considered to have a dependency on the previous alignment aj−1. Thus a first-order HMM for an
alignment between e ≡ e1:I and f ≡ f1:J is defined as:

p(f1:J |e1:I) =
∑

a1:J

J∏

j=1

p(fj |eaj
)p(aj |aj−1), (2)

where p(aj |aj−1) is the state transition probability; J and I are sentence lengths of the French and
English sentences, respectively. The transition model enforces the proximity-bias. An additional
pseudo word ”NULL” is used at the beginning of English sentences for HMM to start with. The
HMM implemented in GIZA++ [5] is used as our baseline, which includes refinements such as
special treatment of a jump to a NULL word. A graphical model representation for such an HMM
is illustrated in Figure 1 (a).
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(a) HMM for Word Alignment (b) HM-BiTAM

Figure 1: The graphical model representations of (a) HMM, and (b) HM-BiTAM, for parallel corpora. Circles
represent random variables, hexagons denote parameters, and observed variables are shaded.

2• The posterior can be used in creative ways

• E.g., IR, collaborative filtering, document similarity,
visualizing interdisciplinary documents
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Approximate posterior inference
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Posterior distribution for LDA

• For now, assume the topics β1:K are fixed.
The per-document posterior is

p(θ |α)
∏N

n=1 p(zn | θ)p(wn | zn, β1:K )∫
θ p(θ |α)

∏N
n=1

∑K
z=1 p(zn | θ)p(wn | zn, β1:K )

• This is intractable to compute

• It is a “multiple hypergeometric function” (see Dickey, 1983)

• Can be seen as sum of NK (tractable) Dirichlet integral terms
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Posterior distribution for LDA

θd Zd,n Wd,n
N

D K
βk

α η

We appeal to approximate posterior inference of the posterior,

p(θ |α)
∏N

n=1 p(zn | θ)p(wn | zn, β1:K )∫
θ p(θ |α)

∏N
n=1

∑K
z=1 p(zn | θ)p(wn | zn, β1:K )

• Gibbs sampling

• Variational methods

• Particle filtering
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Gibbs sampling

• Define a Markov chain whose stationary distribution is the
posterior of interest

• Collect independent samples from that stationary distribution;
approximate the posterior with them

• In Gibbs sampling, the space of the MC is the space of possible
configurations of the hidden variables.

• The chain is run by iteratively sampling from the conditional
distribution of each hidden variable given observations and the
current state of the other hidden variables

• Once a chain has “burned in,” collect samples at a lag to
approximate the posterior.
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Gibbs sampling for LDA

θd Zd,n Wd,n
N

D K
βk

α η

Define n(z1:N) to be the counts vector. A simple Gibbs sampler is

θ |w1:N , z1:N ∼ Dir(α + n(z1:N))

zi | z−i ,w1:N ∼ Mult(π(z−i ,wi ))

where
π(z−i ,wi ) ∝ (α + n(z1:N))p(wi |β1:K )
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Gibbs sampling for LDA

θd Zd,n Wd,n
N

D K
βk

α η

• The topic proportions θ can be integrated out.

• A collapsed Gibbs sampler draws from

p(zi | z−i ,w1:N) ∝ p(wi |β1:K )
∏K

k=1 Γ(nk(z−i )),

where nk(z−i ) is the number of times we’ve seen topic k in the
collection of topic assignments z−i .

• Integrating out variables leads to a faster mixing chain.
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Variational inference (in general)

• Variational methods are a deterministic alternative to MCMC.

• Let x1:N be observations and z1:M be latent variables

• Our goal is to compute the posterior distribution

p(z1:M | x1:N) =
p(z1:M , x1:N)∫

p(z1:M , x1:N)dz1:M

• For many interesting distributions, the marginal likelihood of the
observations is difficult to efficiently compute
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Variational inference

• Use Jensen’s inequality to bound the log prob of the observations:

log p(x1:N) = log

∫
p(z1:M , x1:N)dz1:M

= log

∫
p(z1:M , x1:N)

qν(z1:M)

qν(z1:M)
dz1:M

≥ Eqν [log p(z1:M , x1:N)]− Eqν [log qν(z1:M)]

• We have introduced a distribution of the latent variables with free
variational parameters ν.

• We optimize those parameters to tighten this bound.

• This is the same as finding the member of the family qν that is
closest in KL divergence to p(z1:M | x1:N).
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Mean-field variational inference

• Complexity of optimization is determined by the factorization of qν

• In mean field variational inference we choose qν to be fully factored

qν(z1:M) =
M∏

m=1

qνm(zm).

• The latent variables are independent.

• Each is governed by its own variational parameter νm.

• In the true posterior they can exhibit dependence
(often, this is what makes exact inference difficult).
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MFVI and conditional exponential families

• Suppose the distribution of each latent variable conditional on the
observations and other latent variables is in the exponential family:

p(zm | z−m, x) = hm(zm) exp{gm(z−m, x)T zm − am(gi (z−m, x))}

• Assume qν is fully factorized, and each factor is in the same
exponential family:

qνm(zm) = hm(zm) exp{νT
mzm − am(νm)}
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MFVI and conditional exponential families

• Variational inference is the following coordinate ascent algorithm

νm = Eqν [gm(Z−m, x)]

• Notice the relationship to Gibbs sampling.

• (You will hear much more about this from Minka and Winn.)
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Variational inference

• Alternative to MCMC; replace sampling with optimization.

• Deterministic approximation to posterior distribution.

• Uses established optimization methods
(block coordinate ascent; Newton-Raphson; interior-point).

• Faster, more scalable than MCMC for large problems.

• Biased, whereas MCMC is not.

• Emerging as a useful framework for fully Bayesian and empirical
Bayesian inference problems.
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Variational Inference for LDA

θd Zd,n Wd,n
N

D K
βk

α η

• The mean field variational distribution is

q(θ, z1:N | γ, φ1:N) = q(θ | γ)
∏N

n=1 q(zn |φ)

• This is a family of distributions over the latent variables, where all
variables are independent and governed by their own parameters.

• In the true posterior, the latent variables are not independent.
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Variational Inference for LDA

θd Zd,n Wd,n
N

D K
βk

α η

The variational paramters are:

γ Dirichlet parameters
φ1:N Multinomial parameters for K-dim variables

There is a separate variational Dirichlet distribution for each document;
there is a separate multinomial distribution for each word in each docu-
ment. (Contrast this to the model.)
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Variational Inference for LDA

θd Zd,n Wd,n
N

D K
βk

α η

Coordinate ascent on the variational objective,

γ = α +
∑N

n=1 φn

φn ∝ exp{E[log θ] + log β.,wn},

where
E[log θi ] = Ψ(γi )−Ψ(

∑
j γj).
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Estimating the topics

Maximum likelihood: Expectation-Maximization

• E-step: Use variational or MCMC to approximate the per-document
posterior

• M-step: Find MLE of β1:K from expected counts

Bayesian topics

• Put a Dirichlet prior on the topics (usually exchangeable)
Note/Warning: This controls the sparsity of the topics

• Collapsed Gibbs sampling is still possible—we only need to keep
track of the topic assignments.

• Variational: Use a variational Dirichlet for each topic
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Inference comparison

• Conventional wisdom says that:

• Gibbs is easiest to implement
• Variational can be faster, especially when dealing with

nonconjugate priors (more on that later)

• There are other options:

• Collapsed variational inference
• Parallelized inference for large corpora
• Particle filters for on-line inference

• An ICML paper examining these issues is Asuncion et al. (2009).
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Jonathan Chang’s R implementation

result <-
lda.collapsed.gibbs.sampler(cora.documents,

K, ## Num clusters
cora.vocab, ## vocabulary
100, ## num iterations
0.1, ## topic dirichlet
0.1) ## prop dirichlet

See http://www.pleasescoopme.com/
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Jonathan Chang’s R implementation
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Supervised and relational topic models
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Supervised topic models

• But LDA is an unsupervised model. How can we build a topic model
that is good at the task we care about?

• Many data are paired with response variables.

• User reviews paired with a number of stars
• Web pages paired with a number of “diggs”
• Documents paired with links to other documents
• Images paired with a category

• Supervised topic models are topic models of documents and
responses, fit to find topics predictive of the response.
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Supervised LDA

θd Zd,n Wd,n
N

D

K
βk

α

Yd η, σ
2

1 Draw topic proportions θ |α ∼ Dir(α).

2 For each word

• Draw topic assignment zn | θ ∼ Mult(θ).
• Draw word wn | zn, β1:K ∼ Mult(βzn).

3 Draw response variable y | z1:N , η, σ
2 ∼ N

(
η>z̄ , σ2

)
, where

z̄ = (1/N)
∑N

n=1 zn.
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Supervised LDA

θd Zd,n Wd,n
N

D

K
βk

α

Yd η, σ
2

• The response variable y is drawn after the document because it
depends on z1:N , an assumption of partial exchangeability.

• Consequently, y is necessarily conditioned on the words.

• In a sense, this blends generative and discriminative modeling.
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Supervised LDA

θd Zd,n Wd,n
N

D

K
βk

α

Yd η, σ
2

• Given a set of document-response pairs, fit the model parameters by
maximum likelihood.

• Given a new document, compute a prediction of its response.

• Both of these activities hinge on variational inference.
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Variational inference in sLDA

θd Zd,n Wd,n
N

D

K
βk

α

Yd η, σ
2

• Our goal is to compute the posterior distribution

p(θ, z1:N |w1:N) =
p(θ, z1:N ,w1:N)∑

z1:N
,
∫
θ p(θ, z1:N ,w1:N)

• We approximate by minimizing the KL divergence to a simpler
family of distributions,

q∗ν = arg min
q∈Q

KL(q||p)
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Variational inference in sLDA

θd Zd,n Wd,n
N

D

K
βk

α

Yd η, σ
2

Equivalently, maximize the Jensen’s bound

log p(w1:N , y) ≥
E[log p(θ |α)] +

∑N
n=1 E[log p(Zn | θ)] +

∑N
n=1 E[log p(wn |Zn, β1:K )]

+E[log p(y |Z1:N , η, σ
2)] + H(q)
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Variational inference in sLDA

θd Zd,n Wd,n
N

D

K
βk

α

Yd η, σ
2

The distinguishing term is

E[log p(y |Z1:N)] = −1

2
log
(
2πσ2

)
− y2 − 2yη>E

[
Z̄
]

+ η>E
[
Z̄ Z̄>

]
η

2σ2

We use the fully-factorized variational distribution

q(θ, z1:N | γ, φ1:N) = q(θ | γ)
∏N

n=1 q(zn |φn),
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Variational inference in sLDA

θd Zd,n Wd,n
N

D

K
βk

α

Yd η, σ
2

• The expectations are

E
[
Z̄
]

= φ̄ :=
1

N

N∑

n=1

φn

E
[
Z̄ Z̄>

]
=

1

N2

(∑N
n=1

∑
m 6=n φnφ

>
m +

∑N
n=1 diag{φn}

)
.

• Leads to an easy coordinate ascent algorithm.
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Maximum likelihood estimation

• The M-step is an MLE under expected sufficient statistics.

• Define

• y = y1:D is the response vector
• A is the D × K matrix whose rows are Z̄>d .

• MLE of the coefficients solve the expected normal equations

E
[
A>A

]
η = E[A]>y ⇒ η̂new ←

(
E
[
A>A

])−1
E[A]>y

• The MLE of the variance is

σ̂2
new ← (1/D){y>y − y>E[A]

(
E
[
A>A

])−1
E[A]>y}
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Prediction

• We have fit SLDA parameters to a corpus, using variational EM.

• We have a new document w1:N with unknown response value.

• First, run variational inference in the unsupervised LDA model, to
obtain γ and φ1:N for the new document.
(LDA ⇔ integrating unobserved Y out of SLDA.)

• Predict y using SLDA expected value:

E
[
Y |w1:N , α, β1:K , η, σ

2
]
≈ η>Eq

[
Z̄
]

= η>φ̄.
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Example: Movie reviews
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• 10-topic sLDA model on movie reviews (Pang and Lee, 2005).

• Response: number of stars associated with each review

• Each component of coefficient vector η is associated with a topic.
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Predictive R2

(SLDA is red.)
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Held out likelihood

(SLDA is red.)
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Predictive R2 on Digg

(SLDA is red.)
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Held out likelihood on Digg

(SLDA is red.)

● ● ●
●

●

●

●

●

●
● ●

●

●

●

2 4 10 20 30

−
8.

6
−

8.
5

−
8.

4
−

8.
3

−
8.

2
−

8.
1

−
8.

0

Number of topics

P
er

−
w

or
d 

he
ld

 o
ut

 lo
g 

lik
el

ih
oo

d

D. Blei Topic Models



Diverse response types with GLMs

• Want to work with response variables that don’t live in the reals.

• binary / multiclass classification
• count data
• waiting time

• Model the response response with a generalized linear model

p(y | ζ, δ) = h(y , δ) exp

{
ζy − A(ζ)

δ

}
,

where ζ = η>z̄ .

• Complicates inference, but allows for flexible modeling.
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Example: Multi-class classification
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Figure 4. Example results from the LabelMe dataset. For each class, left side contains examples with correct classification and predicted
annotations, while right side contains wrong ones (the class label in the bracket is the right one) with the predicted annotations. The italic
words indicate the class label, while the normal words are associated predicted annotations.

[28] J. Vogel and B. Schiele. A semantic typicality measure for
natural scene categorization. In DAGM-Symposium, 2004. 5

[29] Y. Wang and S. Gong. Conditional random field for natural
scene categorization. In BMVC, 2007. 5

[30] Z.-H. Zhou and M.-L. Zhang. Multi-instance multi-label
learning with application to scene classification. In NIPS,
2006. 5
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Figure 2. Comparisons of average accuracy over all classes based on 5 random train/test subsets. multi-class sLDA with annotations and
multi-class sLDA (red curves in color) are both our models. left. Accuracy as a function of the number of topics on the LabelMe dataset.
right. Accuracy as a function of the number of topics on the UIUC-Sport dataset.

3. multi-class sLDA: This is the multi-class sLDA model,
described in this paper.

4. multi-class sLDA with annotations: This is multi-class
sLDA with annotations, described in this paper.

Note all testing is performed on unlabeled and unannotated
images.

The results are illustrated in the graphs of Figure 2 and
in the confusion matrices of Figure 3.2 Our models—multi-
class sLDA and multi-class sLDA with annotations— per-
form better than the other approaches. They reduce the error
of Fei-Fei and Perona, 2005 by at least 10% on both data
sets, and even more for Bosch et al., 2006. This demon-
strates that multi-class sLDA is a better classifier, and that
joint modeling does not negatively affect classification ac-
curacy when annotation information is available. In fact, it
usually increases the accuracy.

Observe that the model of [5], unsupervised LDA com-
bined with KNN, gives the worst performance of these
methods. This highlights the difference between finding
topics that are predictive, as our models do, and finding
topics in an unsupervised way. The accuracy of unsuper-
vised LDA might be increased by using some of the other
visual features suggested by [5]. Here, we restrict ourselves
to SIFT features in order to compare models, rather than
feature sets.

As the number of topics increases, the multi-class sLDA
models (with and without annotation) do not overfit until
around 100 topics, while Fei-Fei and Perona, 2005 begins
to overfit at 40 topics. This suggests that multi-class sLDA,
which combines aspects of both generative and discrimina-
tive classification, can handle more latent features than a

2Other than the topic models listed, we also tested an SVM-based ap-
proach using SIFT image features. The SVM yielded much worse perfor-
mance than the topic models (47% for the LabelMe data, and 20% for the
UIUC-Sport data). These are not marked on the plots.

purely generative approach. On one hand, a large number
of topics increases the possibility of overfitting; on the other
hand, it provides more latent features for building the clas-
sifier.

Image Annotation. In the case of multi-class sLDA with
annotations, we can use the same trained model for image
annotation. We emphasize that our models are designed for
simultaneous classification and annotation. For image an-
notation, we compare following two methods,

1. Blei and Jordan, 2003: This is the corr-LDA model
from [2], trained on annotated images.

2. multi-class sLDA with annotations: This is exactly the
same model trained for image classification in the pre-
vious section. In testing annotation, we observe only
images.

To measure image annotation performance, we use an
evaluation measure from information retrieval. Specifi-
cally, we examine the top-N F-measure3, denoted as F-
measure@N , where we set N = 5. We find that multi-
class sLDA with annotations performs slightly better than
corr-LDA over all the numbers of topics tested (about 1%
relative improvement). For example, considering models
with 100 topics, the LabelMe F-measures are 38.2% (corr-
LDA) and 38.7% (multi-class sLDA with annotations); on
UIUC-Sport, they are 34.7% (corr-LDA) and 35.0% (multi-
class sLDA with annotations).

These results demonstrate that our models can perform
classification and annotation with the same latent space.
With a single trained model, we find the annotation per-
formance that is competitive with the state-of-the-art, and
classification performance that is superior.

3F-measure is defined as 2 ∗ precision ∗ recall/(precision + recall).

6

# of components

SLDA for image classification (with Chong Wang, CVPR 2009)
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Supervised topic models

• SLDA enables model-based regression where the predictor “variable”
is a text document.

• It can easily be used wherever LDA is used in an unsupervised
fashion (e.g., images, genes, music).

• SLDA is a supervised dimension-reduction technique, whereas LDA
performs unsupervised dimension reduction.

• LDA + regression compared to sLDA is like principal components
regression compared to partial least squares.
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Relational topic models
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We address the problem of 
finding a subset of features that 
allows a supervised induction 
algorithm to induce small high-
accuracy concepts...

Irrelevant features and the 
subset selection problem

In many domains, an appropriate 
inductive bias is the MIN-
FEATURES bias, which prefers 
consistent hypotheses definable 
over as few features as 
possible...

Learning with many irrelevant 
features

In this introduction, we define the 
term bias as it is used in machine 
learning systems. We motivate 
the importance of automated 
methods for evaluating...

Evaluation and selection of 
biases in machine learning

The inductive learning problem 
consists of learning a concept 
given examples and 
nonexamples of the concept. To 
perform this learning task, 
inductive learning algorithms bias 
their learning method...

Utilizing prior concepts for 
learning

The problem of learning decision 
rules for sequential tasks is 
addressed, focusing on the 
problem of learning tactical plans 
from a simple flight simulator 
where a plane must avoid a 
missile...

Improving tactical plans with 
genetic algorithms

Evolutionary learning methods 
have been found to be useful in 
several areas in the development 
of intelligent robots. In the 
approach described here, 
evolutionary...

An evolutionary approach to 
learning in robots

Navigation through obstacles 
such as mine fields is an 
important capability for 
autonomous underwater vehicles. 
One way to produce robust 
behavior...

Using a genetic algorithm to 
learn strategies for collision 

avoidance and local 
navigation

...

...

...

...

...

...

...

...

...

...

• Many data sets contain connected observations.

• For example:

• Citation networks of documents
• Hyperlinked networks of web-pages.
• Friend-connected social network profiles
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We address the problem of 
finding a subset of features that 
allows a supervised induction 
algorithm to induce small high-
accuracy concepts...

Irrelevant features and the 
subset selection problem

In many domains, an appropriate 
inductive bias is the MIN-
FEATURES bias, which prefers 
consistent hypotheses definable 
over as few features as 
possible...

Learning with many irrelevant 
features

In this introduction, we define the 
term bias as it is used in machine 
learning systems. We motivate 
the importance of automated 
methods for evaluating...

Evaluation and selection of 
biases in machine learning

The inductive learning problem 
consists of learning a concept 
given examples and 
nonexamples of the concept. To 
perform this learning task, 
inductive learning algorithms bias 
their learning method...

Utilizing prior concepts for 
learning

The problem of learning decision 
rules for sequential tasks is 
addressed, focusing on the 
problem of learning tactical plans 
from a simple flight simulator 
where a plane must avoid a 
missile...

Improving tactical plans with 
genetic algorithms

Evolutionary learning methods 
have been found to be useful in 
several areas in the development 
of intelligent robots. In the 
approach described here, 
evolutionary...

An evolutionary approach to 
learning in robots

Navigation through obstacles 
such as mine fields is an 
important capability for 
autonomous underwater vehicles. 
One way to produce robust 
behavior...

Using a genetic algorithm to 
learn strategies for collision 

avoidance and local 
navigation

...

...

...

...

...

...

...

...

...

...

• Research has focused on finding communities and patterns in the
link-structure of these networks (Kemp et al. 2004, Hoff et al.,
2002, Hofman and Wiggins 2007, Airoldi et al. 2008).

• By adapting supervised topic modeling, we can build a good model
of content and structure.

• RTMs find related hidden structure in both types of data.
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Relational topic models

α

Nd

θd

wd,n

zd,n

K
βk

yd,d'

η

Nd'

θd'

wd',n

zd',n

• Binary response variable with each pair of documents

• Adapt variational EM algorithm for sLDA with binary GLM response
model (with different link probability functions).

• Allows predictions that are out of reach for traditional models.
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Predictive performance of one type given the other
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Predictive performance of one type given the other
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Predicting links from documents

16 J. CHANG AND D. BLEI

Table 2
Top eight link predictions made by RTM (ψe) and LDA + Regression for two documents
(italicized) from Cora. The models were fit with 10 topics. Boldfaced titles indicate actual

documents cited by or citing each document. Over the whole corpus, RTM improves
precision over LDA + Regression by 80% when evaluated on the first 20 documents

retrieved.

Markov chain Monte Carlo convergence diagnostics: A comparative review

Minorization conditions and convergence rates for Markov chain Monte Carlo
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Rates of convergence of the Hastings and Metropolis algorithms
Possible biases induced by MCMC convergence diagnostics

Bounding convergence time of the Gibbs sampler in Bayesian image restoration
Self regenerative Markov chain Monte Carlo

Auxiliary variable methods for Markov chain Monte Carlo with applications
Rate of Convergence of the Gibbs Sampler by Gaussian Approximation

Diagnosing convergence of Markov chain Monte Carlo algorithms

Exact Bound for the Convergence of Metropolis Chains L
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n

Self regenerative Markov chain Monte Carlo
Minorization conditions and convergence rates for Markov chain Monte Carlo

Gibbs-markov models
Auxiliary variable methods for Markov chain Monte Carlo with applications
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Mediating instrumental variables

A qualitative framework for probabilistic inference
Adaptation for Self Regenerative MCMC

Competitive environments evolve better solutions for complex tasks

Coevolving High Level Representations
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A Survey of Evolutionary Strategies
Genetic Algorithms in Search, Optimization and Machine Learning

Strongly typed genetic programming in evolving cooperation strategies
Solving combinatorial problems using evolutionary algorithms
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A New Algorithm for DNA Sequence Assembly
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Identification of protein coding regions in genomic DNA
Solving combinatorial problems using evolutionary algorithms

A promising genetic algorithm approach to job-shop scheduling. . .
A genetic algorithm for passive management

The Performance of a Genetic Algorithm on a Chaotic Objective Function
Adaptive global optimization with local search

Mutation rates as adaptations

Table 2 illustrates suggested citations using RTM (ψe) and LDA + Regres-
sion as predictive models. These suggestions were computed from a model fit
on one of the folds of the Cora data. The top results illustrate suggested links
for “Markov chain Monte Carlo convergence diagnostics: A comparative re-

Given a new document, which documents is it likely to link to?
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Spatially consistent topics18 J. CHANG AND D. BLEI
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Fig 5. A comparison between RTM (left) and LDA (right) of topic distributions on local
news data. Each color/row depicts a single topic. Each state’s color intensity indicates the
magnitude of that topic’s component. The corresponding words associated with each topic
are given in Table 3. Whereas LDA finds geographically diffuse topics, RTM, by modeling
spatial connectivity, finds coherent regions.
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• For exploratory tasks, RTMs can be used to “guide” the topics

• Documents are geographically-tagged news articles from Yahoo!
Links are the adjacency matrix of states

• RTM finds spatially consistent topics.
D. Blei Topic Models



Relational Topic Models

• Relational topic modeling allows us to analyze connected
documents, or other data for which the mixed-membership
assumptions are appropriate.

• Traditional models cannot predict with new and unlinked data.

• RTMs allow for such predictions

• links given the new words of a document
• words given the links of a new document
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Used in exploratory tools of document collections
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