Machine Learning 202

Recommender Systems

Qutline

Background

Collaborative Filtering for 0-1 Data

— User based CF

— Item based CF

— Association Rules

Evaluation of "top-N" recommender algo

Examples using recommenderlab from cranr
on MS weblogs

Netflix Problem

* Customer logs onto Netflix site
— Has known history w Netflix
— Past movie ratings
— Mavies watched

* What movies should Netflix promote to the
user?

Netflix Prize

* Netflix had a system in place to predict how a
user would rate movies they hadn't seen.
They wanted better performance

* In 2006 Netflix decided to have a contest

* They offerred $1 million to first person (or
team) that could improve upon Netflix
prediction performance by 10%

Scale of the problem and the contest

480,000 users 17,770 movies, 100 million
ratings

6 years of data 2000 through 2005

2700 teams enter competition

3 years to finish.

Recommendation— Ask your Brother

Find people with similar tastes and ask them
for recommendations

Called “Collaborative Filtering”

Transaction-hased

Characterize movies based on who gives them
the same ratings.

Collaborative Filtering

* Here'satable of ratings

Userl User?2 User3

Moviel il 3 0
Moviel 5 3 1
Movie3 0 0 5

* Movielis closer to Movie2 thanitis to Movie3,

based onuserratings. (and Userlis closerto
User2)

Collaborative Filtering - Binary Data

* Supposethatall we haveis data on what movies
were watched

Userl User?2 User3

Moviel 1 1 0
Moviel 1 1 1
Movie3 0 0 1

* Withoutthe rating proximityis obvious
* Binarydata are completely objective

Collaborative Filtering

+ This is significantly more precise than attribute-based
— Don't need to tell it which attributes are important
— Exploits judgments of other users

Mot limited by user's self designated profile

Mot limited by movie's self-reported profile
And

* Transaction records become a source of competitive
advantage!

Other Problems Amenable to this
Approach

* Movies
— Basedon Movies Watched (versus ratings)

+ Books (electronics, cameras, etc)
— Basedon Purchase Transactions {Amazon, ebay, etc.)

+ Adserving
— Basedon Ads clicked

+ double click (doyou auto-delete the dc cookie?)
* google (areyou signedin?)

+ (Others?

Qutline

* Collaborative Filtering for 0-1 Data

Collaborative Filtering on 0-1 Data

Set of users - U ={ul, u2, ..., umj}

Set of items - 1 ={i1,i2, ..., in}

Matrix of ratings, or 0-1's

— R = {rij}

—rij=1 if user i has preference for item |
=0 otherwise

* See any problems?

0 is different from 1

An entry of "1" in the matrix means interest
(or click or purchase, etc.)

What does a "0" mean?

— User not aware of product

— User hasn't wanted it up to this pointin time

— User dislikes product

One-class data (recall using one class svm for
fraud detection)

What to do with "0"

Usually don't have data to distinguish the
different reasons for inaction (not clicking a
link, etc.)

Could use one-class tech

Usually treat different meanings as a single
class - results legitimize this approach

Problem Formulation

For user "a" ua € U (called the "active" user)

Let 1a =1\ {il € | such that ral =1}
la is the set of items not selected by user "a"

Predict ratings for all elements of Ia
or

Create a list of top N recommendations

Types of Algorithms

Memory-based - Search whole data base to
develop ordered set of recommendations

— User-based CF

— Scalability problem

Model-based - Use db to learn compact
representation of answers

Qutline

* Collaborative Filtering for 0-1 Data
— User based CF

User-based CF

* Mimics word of mouth

* Find a neighborhood of users with similar
tastes

* Neighborhood defined by similarity (or
distance) measure
— Pearson correlation
— Cosine similarity
— Jacard similarity

Similarity Measures

* Pearson correlation
¥ efxt —xavg)«(yvi—yavg)
Sp[xl‘f} = = _ . . P
(|I|—1)#sd(x)=sd{v)

* Cosinesimilarity

=y
Sclx,y) = [EIERIEIE

* Jacard similarity
. X0y

Develop Ratings for la

* Use similarity measure (or metric) to define a
neighborhood N of ua (active user).

* Basically average the other user's ratings to
estimate ua's rating.

Qutline

* Collaborative Filtering for 0-1 Data

— ltermn based CF

ltem-Based CF

* Model Building - Build an item-item similarity
matrix - S

* Normalize S so that rows sum to 1.

* For each row (item) set to zero all but the
largest similarities (to reduce model size)

* For each item calculate score hy adding
together similarity with active user's items

* Remove items already in actives user's set

ltem-based CF

* More efficient for computer time and storage
than user-based

* Only slightly inferior in performance

* Successfully applied to large-scale problems
(e.g. Amazon)

Outline — Where are we?

* Collaborative Filtering for 0-1 Data

— Association Rules

CF Using Association Rules

e What are association rules?
o Let1={il,i2, ... ,in} be a set of items (peanut butter,
jelly, etc)
o Let D ={t1, t2, ... tm} be a set of transactions
= Each ti a subset of | - (shopping cart)
e Association rule is an implication of the form:
X =>Y where X,Y are both subsets of | and XnY =@
(chips => dip)

Support and Confidence

e Support — For a set of items A subset of | support is
support(A) = |{ti | Ais subset of ti}| / |D|

e Support for an a-rule — For disjoint sets X, Y (subsets of |)
support(X =>Y) = support(XuY)

e Confidence -
confidence(X=>Y) = support (XuY)/support(X)

A-Rules for DF

e Treat each user's 1's as a single transaction
e Calculate rules of the form X=>Y with highest confidence

e For X's that are subsets of active user's chosen items look
up Y's and rank by confidence

Outline — Where are we?

e Evaluation of "top-N" recommender algo

Evaluation of Top-N recommender algorithms

e Given matrix R —
o Partition R — some rows for "test_set" the rest for
"train_set"
o Train also on train_set
o Test performance on test_set
e For testing
o Treat each user as "active" user
o Remove some of user's actual selections
o See if given Top-N recommender algo replaces
removed selections

How to Split R

e Simple Split (for large data)
o Pick a reasonable fraction (30% test, 70% train)
o Sample at random
e Bootstrap Sampling — (for small data)
o Sample with replacement to form training set
o Test on users not included in training set
e k-fold Cross-Validation
o Divide users into k equal groups
o Run k training/testing passes holding out a different
one of k groups for testing on each pass

Delete Items for Test Users

e "Givenj" —Keep "j" transactions and build recommender
to fill in the others

e "All butj" — Delete "j" transactions

Evaluating Performance

e For each user in test set generate Top-N recommendations
e Build confusion matrix:

Actual/Predicted Negative Positive
Negative a b
Positive C d

e Notice b+d =N, c+d = # withheld
e Some Performance Terms
Accuracy = (a+d)/(a+b+c+d)
Precision = d/(b+d)
Recall = d/(c+d)
TPR = Recall
FPR = b/(a+b)

Discussion re Evaluation

e To evaluate performance can use ROC curve AUC and tools
we discussed in ML 101

e This scheme doesn't distinguish between getting good
recommendation at 1° or 5™ in sequence — that may make
a difference

Singular Value Decomposition

e Suppose M is an mxn matrix

e Singular Value Decomposition of M is a product of
matrices
M =UZV' ('means matrix transpose)
where
U = mxm unitary matrix (UU' = U'U = 1)
2 = mxn diagonal matrix of singular values — the singular
values are all positive and arrange in decreasing
magnitude
V' = nxn unitary matrix

Low-Rank Approximation using SVD

® SVD can be used to generate low-rank approximations as
follows.

® Suppose M =UzV', as above. If we want an approximation
to M that is of rank k (less that the rank of M).

® Form 2, = X (with singular values smaller than the largest k
set to 0)

® Then M = UZ\V'is the closest rank k approximation to M
in the sense of Frobenius norm.

How Does SVD Help?

e Think of SVD as finding an abstract concept space where
the importance of concepts are indicated by the singular
values

e U maps users into the concept space. V' maps items
(movies, web pages, ads) into concept space.

e In concept space we can compare a movie and a user
directly to one another.

Calculate Similarity Using SVD

e Recall M = UzV'

e M is mxn (by convention m = #users, n = #items)

e Take a unit vector in item-space, call it e; (vector of O's
except i element which is 1)

e Me; maps the i item from item space to user space (the
vector of users who selected the i item)

e JV'e;is a column vector in concept space that represents
the i item.

Calculate Similarity Using SVD

e Users are represented by a vector in item-space (vector
with 1's where corresponding to items of interest)

e |tems are represented by a vector in item-space ()

e Map the user and the items to concept-space using
truncated SVD (Z,V') and compare using directional
similarity like correlation

