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CF Using Association Rules 

 What are association rules? 

o Let I = {i1, i2, … ,in} be a set of items (peanut butter, 

jelly, etc) 

o Let D = {t1, t2, … tm} be a set of transactions  

 Each ti a subset of I - (shopping cart) 

 Association rule is an implication of the form: 

X => Y where X,Y are both subsets of I and X∩Y = Ø 

(chips => dip) 

 

 

Support and Confidence 

 Support – For a set of items A subset of I support is  

support(A) = |{ti | A is subset of ti}| / |D| 

 Support for an a-rule – For disjoint sets X, Y (subsets of I) 

support(X =>Y) = support(XᴜY) 

 Confidence -  

confidence(X=>Y) = support (XᴜY)/support(X) 

 

 

 



A-Rules for DF 

 Treat each user's 1's as a single transaction 

 Calculate rules of the form X=>Y with highest confidence 

 For X's that are subsets of active user's chosen items look 

up Y's and rank by confidence  
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Evaluation of Top-N recommender algorithms 

 Given matrix R – 

o Partition R – some rows for "test_set" the rest for 

"train_set" 

o Train also on train_set 

o Test performance on test_set 

 For testing  

o Treat each user as "active" user 

o Remove some of user's actual selections 

o See if given Top-N recommender algo replaces 

removed selections 

 

How to Split R 

 Simple Split (for large data) 

o Pick a  reasonable fraction (30% test, 70% train) 

o Sample at random 

 Bootstrap Sampling – (for small data) 

o Sample with replacement to form training set 

o Test on users not included in training set 

 k-fold Cross-Validation 

o Divide users into k equal groups 

o Run k training/testing passes holding out a different 

one of k groups for testing on each pass 



Delete Items for Test Users 

 "Given j" – Keep "j" transactions and build recommender 

to fill in the others 

 "All but j" – Delete "j" transactions 

 

 

Evaluating Performance 

 For each user in test set generate Top-N recommendations 

 Build confusion matrix: 

Actual/Predicted Negative Positive 
Negative a b 

Positive c d 

 Notice b+d = N, c+d = # withheld 

 Some Performance Terms 

Accuracy = (a+d)/(a+b+c+d) 

Precision = d/(b+d) 

Recall = d/(c+d) 

TPR = Recall 

FPR = b/(a+b) 

 

 

 

 



Discussion re Evaluation 

 To evaluate performance can use ROC curve AUC and tools 

we discussed in ML 101 

 This scheme doesn't distinguish between getting good 

recommendation at 1st or 5th in sequence – that may make 

a difference 

 

 

Singular Value Decomposition 

 Suppose M is an mxn matrix 

 Singular Value Decomposition of M is a product of 

matrices 

M = UΣV'   ( ' means matrix transpose) 

where  

U = mxm unitary matrix (UU' = U'U = I) 

Σ = mxn diagonal matrix of singular values – the singular 

values are all positive and arrange in decreasing 

magnitude 

V' = nxn unitary matrix 

 

 



Low-Rank Approximation using SVD 

 SVD can be used to generate low-rank approximations as 

follows.  

 Suppose M = UΣV', as above.  If we want an approximation 

to M that is of rank k (less that the rank of M). 

 Form Σk = Σ (with singular values smaller than the largest k 

set to 0) 

 Then Mk = UΣkV' is the closest rank k approximation to M 

in the sense of Frobenius norm. 

 

How Does SVD Help? 

 Think of SVD as finding an abstract concept space where 

the importance of concepts are indicated by the singular 

values 

 U maps users into the concept space.  V' maps items 

(movies, web pages, ads) into concept space.   

 In concept space we can compare a movie and a user 

directly to one another.   

 

 

 



Calculate Similarity Using SVD 

 Recall M = UΣV' 

 M is mxn (by convention m = #users, n = #items) 

 Take a unit vector in item-space, call it ei (vector of 0's 

except ith element which is 1) 

 Mei maps the ith item from item space to user space (the 

vector of users who selected the ith item) 

 ΣV'ei is a column vector in concept space that represents 

the ith item. 

 

Calculate Similarity Using SVD 

 Users are represented by a vector in item-space (vector 

with 1's where corresponding to items of interest) 

 Items are represented by a vector in item-space (ei) 

 Map the user and the items to concept-space using 

truncated SVD (ΣkV') and compare using directional 

similarity like correlation 


