

Outline – Where are we?

• Background

• Collaborative Filtering for 0-1 Data

– User based CF

– Item based CF

– Association Rules

• Evaluation of "top-N" recommender algo

• Examples using recommenderlab from cran r on MS

weblogs

CF Using Association Rules

 What are association rules?

o Let I = {i1, i2, … ,in} be a set of items (peanut butter,

jelly, etc)

o Let D = {t1, t2, … tm} be a set of transactions

 Each ti a subset of I - (shopping cart)

 Association rule is an implication of the form:

X => Y where X,Y are both subsets of I and X∩Y = Ø

(chips => dip)

Support and Confidence

 Support – For a set of items A subset of I support is

support(A) = |{ti | A is subset of ti}| / |D|

 Support for an a-rule – For disjoint sets X, Y (subsets of I)

support(X =>Y) = support(XᴜY)

 Confidence -

confidence(X=>Y) = support (XᴜY)/support(X)

A-Rules for DF

 Treat each user's 1's as a single transaction

 Calculate rules of the form X=>Y with highest confidence

 For X's that are subsets of active user's chosen items look

up Y's and rank by confidence

Outline – Where are we?

• Background

• Collaborative Filtering for 0-1 Data

– User based CF

– Item based CF

– Association Rules

• Evaluation of "top-N" recommender algo

• Examples using recommenderlab from cran r on MS

weblogs

Evaluation of Top-N recommender algorithms

 Given matrix R –

o Partition R – some rows for "test_set" the rest for

"train_set"

o Train also on train_set

o Test performance on test_set

 For testing

o Treat each user as "active" user

o Remove some of user's actual selections

o See if given Top-N recommender algo replaces

removed selections

How to Split R

 Simple Split (for large data)

o Pick a reasonable fraction (30% test, 70% train)

o Sample at random

 Bootstrap Sampling – (for small data)

o Sample with replacement to form training set

o Test on users not included in training set

 k-fold Cross-Validation

o Divide users into k equal groups

o Run k training/testing passes holding out a different

one of k groups for testing on each pass

Delete Items for Test Users

 "Given j" – Keep "j" transactions and build recommender

to fill in the others

 "All but j" – Delete "j" transactions

Evaluating Performance

 For each user in test set generate Top-N recommendations

 Build confusion matrix:

Actual/Predicted Negative Positive
Negative a b

Positive c d

 Notice b+d = N, c+d = # withheld

 Some Performance Terms

Accuracy = (a+d)/(a+b+c+d)

Precision = d/(b+d)

Recall = d/(c+d)

TPR = Recall

FPR = b/(a+b)

Discussion re Evaluation

 To evaluate performance can use ROC curve AUC and tools

we discussed in ML 101

 This scheme doesn't distinguish between getting good

recommendation at 1st or 5th in sequence – that may make

a difference

Singular Value Decomposition

 Suppose M is an mxn matrix

 Singular Value Decomposition of M is a product of

matrices

M = UΣV' (' means matrix transpose)

where

U = mxm unitary matrix (UU' = U'U = I)

Σ = mxn diagonal matrix of singular values – the singular

values are all positive and arrange in decreasing

magnitude

V' = nxn unitary matrix

Low-Rank Approximation using SVD

 SVD can be used to generate low-rank approximations as

follows.

 Suppose M = UΣV', as above. If we want an approximation

to M that is of rank k (less that the rank of M).

 Form Σk = Σ (with singular values smaller than the largest k

set to 0)

 Then Mk = UΣkV' is the closest rank k approximation to M

in the sense of Frobenius norm.

How Does SVD Help?

 Think of SVD as finding an abstract concept space where

the importance of concepts are indicated by the singular

values

 U maps users into the concept space. V' maps items

(movies, web pages, ads) into concept space.

 In concept space we can compare a movie and a user

directly to one another.

Calculate Similarity Using SVD

 Recall M = UΣV'

 M is mxn (by convention m = #users, n = #items)

 Take a unit vector in item-space, call it ei (vector of 0's

except ith element which is 1)

 Mei maps the ith item from item space to user space (the

vector of users who selected the ith item)

 ΣV'ei is a column vector in concept space that represents

the ith item.

Calculate Similarity Using SVD

 Users are represented by a vector in item-space (vector

with 1's where corresponding to items of interest)

 Items are represented by a vector in item-space (ei)

 Map the user and the items to concept-space using

truncated SVD (ΣkV') and compare using directional

similarity like correlation

