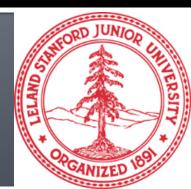
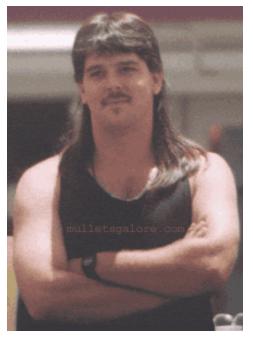
Recommender Systems

CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu



Example



Customer A

- Buys Metalica CD
- Buys Megadeth CD

- Customer B
 - Does search on Metalica
 - Recommender system suggests Megadeth from data collected from customer A

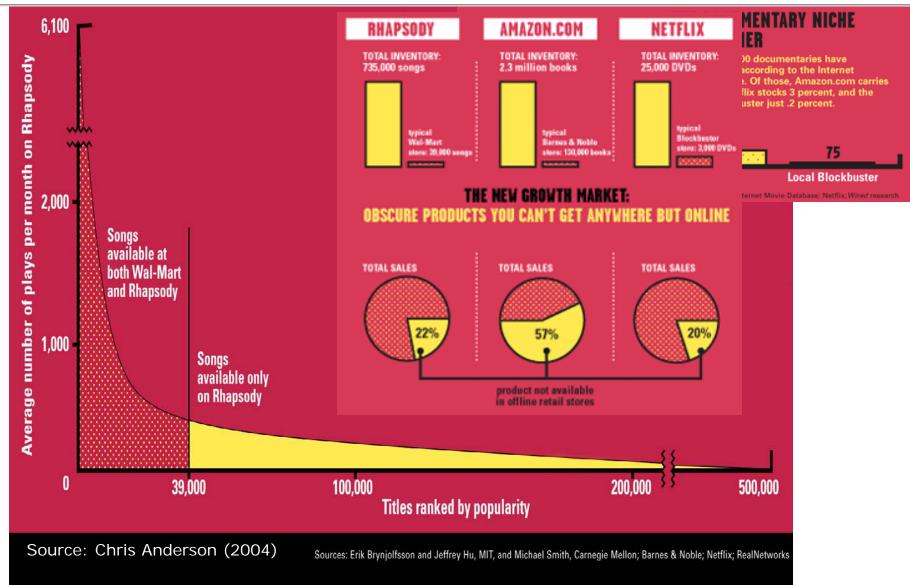
Recommendations

From scarcity to abundance

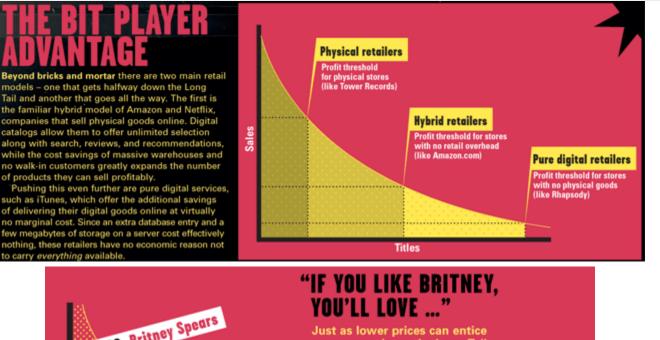
- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- The web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller:
 - http://www.wired.com/wired/archive/12.10/tail.html

The Long Tail

1/30/2011



Physical vs. Online



FUCLE LOVE ... FUCLE LOVE ... Use as lower prices can entice the to obscure content they is to obscure con

Read http://www.wired.com/wired/archive/12.10/tail.html to learn more!

Recommendation Types

Editorial

- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, ...

Formal Model

- C = set of Customers
- S = set of Items
- Utility function $u: C \times S \rightarrow R$
 - R = set of ratings
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in [0,1]

Utility Matrix

Key Problems

- Gathering "known" ratings for matrix
- Extrapolate unknown ratings from known ratings
 - Mainly interested in high unknown ratings
- Evaluating extrapolation methods

Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
- e.g., purchase implies high rating
- What about low ratings?

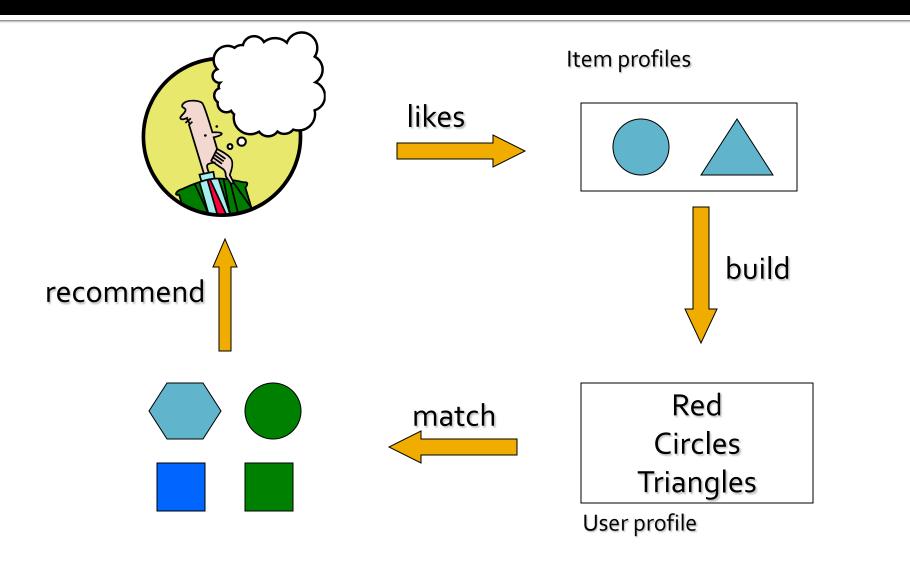
Extrapolating Utilities

- Key problem: matrix U is sparse
 - most people have not rated most items
 - Cold start: new items have no ratings
- Three approaches
 - Content-based
 - Collaborative
 - Hybrid

Content-based recommendations

- Main idea: Recommend items to customer C similar to previous items rated highly by C
- Movie recommendations
 - recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 recommend other sites with "similar" content

Plan of action



Item Profiles

For each item, create an item profile

- Profile is a set of features
 - movies: author, title, actor, director,...
 - text: set of "important" words in document
- How to pick important words?

 Usual heuristic is TF.IDF (Term Frequency times Inverse Doc Frequency)

TF.IDF

$$f_{ij}$$
 = frequency of term t_i in document d_j
 $TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$

n_i = number of docs that mention term i N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF.IDF score $w_{ij} = Tf_{ij} \times IDF_i$ **Doc profile** = set of words with highest TF.IDF scores, together with their scores

User profiles and prediction

User profile possibilities:

- Weighted average of rated item profiles
- Variation: weight by difference from average rating for item
- •••
- Prediction heuristic
 - Given user profile c and item profile s, estimate u(c,s) = cos(c,s) = c.s/(|c||s|)
 - Need efficient method to find items with high utility: later

Pros: Content-based approach

- No need for data on other users.
 - No cold-start or sparsity problems.
- Able to recommend to users with unique tastes.
- Able to recommend new and unpopular items
 - No first-rater problem
- Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based approach

- Finding the appropriate features
 - e.g., images, movies, music
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users
- Recommendations for new users
 How to build a profile?

Collaborative Filtering

- Consider user c
- Find set D of other users whose ratings are "similar" to c's ratings
- Estimate user's ratings based on ratings of users in D

Similar users

- Let r_x be the vector of user x's ratings
- Cosine similarity measure
 - $sim(x,y) = cos(r_x, r_y)$
- Pearson correlation coefficient
 - S_{xy} = items rated by both users x and y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})(r_{ys} - \bar{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})^2 (r_{ys} - \bar{r_y})^2}}$$

Rating predictions

- Let D be the set of k users most similar to c who have rated item s
- Possibilities for prediction function (item s):

•
$$r_{cs} = 1/k \sum_{d \text{ in } D} r_{ds}$$

•
$$r_{cs} = (\sum_{d \text{ in } D} \text{sim}(c,d) r_{ds}) / (\sum_{d \text{ in } D} \text{sim}(c,d))$$

Other options?

Many tricks possible...

Complexity

- Expensive step is finding k most similar customers
 - O(|U|)
- Too expensive to do at runtime
 - Could pre-compute
- Naïve precomputation takes time O(N|U|)
 - Stay tuned for how to do it faster!
- Can use clustering, partitioning as alternatives, but quality degrades

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view
 - For item s, find other similar items
 - Estimate rating for item based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model
- In practice, it has been observed that itemitem often works better than user-user

Example: Item-Item based

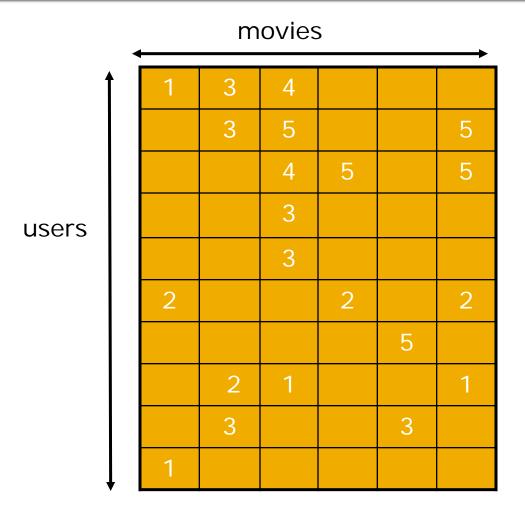
Pros & cons of collaborative filtering

- Works for any kind of item
 - No feature selection needed
- Cold Start:
 - Need enough users in the system to find a match.
- Sparsity:
 - The user/ratings matrix is sparse. Hard to find users that have rated the same items.
- First Rater:
 - Cannot recommend an item that has not been previously rated.
 - New items, Esoteric items
- Popularity Bias:
 - Cannot recommend items to someone with unique tastes.
 - Tends to recommend popular items.

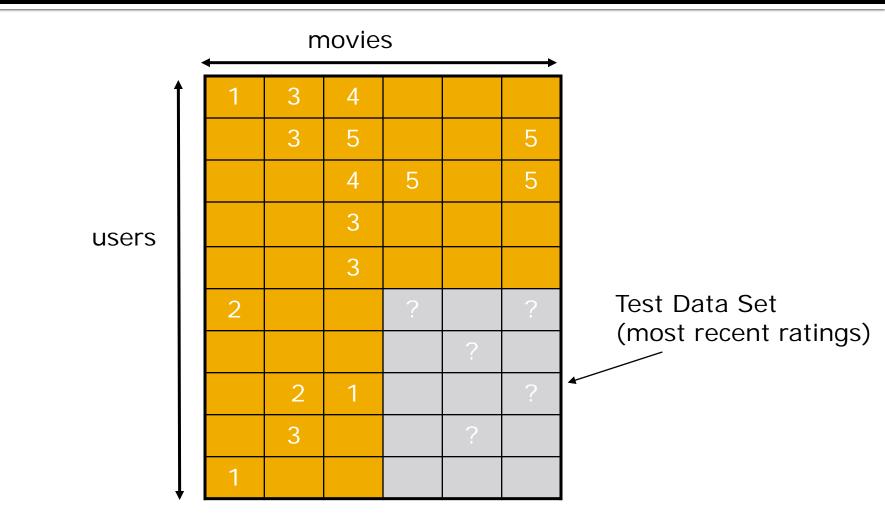
Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - item profiles for new item problem
 - demographics to deal with new user problem

Evaluation



Evaluation



Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
 - Precision at top 10: % of those in top10
 - Rating of top 10: Average rating assigned to top 10
 - Rank Correlation: Spearman's, r_s, between system's and user's complete rankings.
- Another approach: 0/1 model
 - Coverage
 - Number of items/users for which system can make predictions
 - Precision
 - Accuracy of predictions
 - Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives

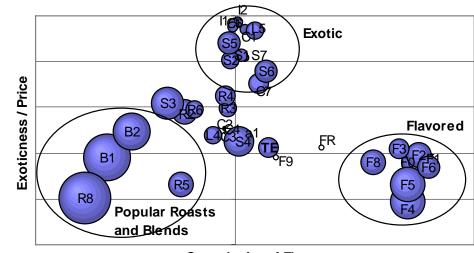
Problems with Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions
- In practice, we care only to predict high ratings:
 - RMSE might penalize a method that does well for high ratings and badly for others

Finding similar vectors

- Common problem that comes up in many settings
- Given a large number N of vectors in some high-dimensional space (M dimensions), find pairs of vectors that have high similarity
 - e.g., user profiles, item profiles
- We already know how to do this!
 - Near-neighbor search in high dimensions (LSH)
 - Dimensionality reduction

Dimensionality reduction



Overview of Coffee Varieties

Complexity of Flavor

The bubbles above represent products sized by sales volume. Products close to each other are recommended to each other.