
CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu



 Customer A
 Buys Metalica CD
 Buys Megadeth CD

 Customer B
 Does search on Metalica
 Recommender system 

suggests Megadeth from data 
collected from customer A



Items

Search Recommendations

Products, web sites, 
blogs, news items, …
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Examples:



 Shelf space is a scarce commodity for 
traditional retailers 
 Also: TV networks, movie theaters,…

 The web enables near-zero-cost 
dissemination of information about products
 From scarcity to abundance

 More choice necessitates better filters
 Recommendation engines
 How Into Thin Air made Touching the Void a 

bestseller:
 http://www.wired.com/wired/archive/12.10/tail.html
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http://www.wired.com/wired/archive/12.10/tail.html�


Source: Chris Anderson (2004)
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Read http://www.wired.com/wired/archive/12.10/tail.html to learn more!

http://www.wired.com/wired/archive/12.10/tail.html�


 Editorial

 Simple aggregates
 Top 10, Most Popular, Recent Uploads

 Tailored to individual users
 Amazon, Netflix, …
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 C = set of Customers
 S = set of Items

 Utility function u: C × S R
 R = set of ratings
 R is a totally ordered set
 e.g., 0-5 stars, real number in [0,1]
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 Gathering “known” ratings for matrix

 Extrapolate unknown ratings from known 
ratings
 Mainly interested in high unknown ratings

 Evaluating extrapolation methods
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 Explicit
 Ask people to rate items
 Doesn’t work well in practice – people can’t be 

bothered

 Implicit
 Learn ratings from user actions
 e.g., purchase implies high rating
 What about low ratings?
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 Key problem: matrix U is sparse
 most people have not rated most items
 Cold start: new items have no ratings

 Three approaches
 Content-based
 Collaborative
 Hybrid
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 Main idea: Recommend items to customer C 
similar to previous items rated highly by C

 Movie recommendations
 recommend movies with same actor(s), director, 

genre, …

 Websites, blogs, news
 recommend other sites with “similar” content
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 For each item, create an item profile

 Profile is a set of features
 movies: author, title, actor, director,…
 text: set of “important” words in document

 How to pick important words?
 Usual heuristic is TF.IDF 

(Term Frequency times Inverse Doc Frequency)
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fij = frequency of term ti in document dj

ni = number of docs that mention term i
N = total number of docs

TF.IDF score  wij = Tfij × IDFi
Doc profile = set of words with highest TF.IDF 

scores, together with their scores

1/30/2011 16Jure Leskovec, Stanford C246: Mining Massive Datasets



 User profile possibilities:
 Weighted average of rated item profiles
 Variation: weight by difference from average rating 

for item
 …

 Prediction heuristic
 Given user profile c and item profile s, estimate 

u(c,s) = cos(c,s) = c.s/(|c||s|)
 Need efficient method to find items with high 

utility: later
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 No need for data on other users.
 No cold-start or sparsity problems.

 Able to  recommend to users with unique 
tastes.

 Able to recommend new and unpopular items
 No first-rater problem

 Can provide explanations of recommended 
items by listing content-features that caused 
an item to be recommended
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 Finding the appropriate features
 e.g., images, movies, music

 Overspecialization
 Never recommends items outside user’s content 

profile
 People might have multiple interests
 Unable to exploit quality judgments of other users

 Recommendations for new users
 How to build a profile?
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 Consider user c

 Find set D of other users whose ratings are 
“similar” to c’s ratings

 Estimate user’s ratings based on ratings of 
users in D
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 Let rx be the vector of user x’s ratings
 Cosine similarity measure
 sim(x,y) = cos(rx , ry)

 Pearson correlation coefficient
 Sxy = items rated by both users x and y
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 Let D be the set of k users most similar to c who have rated 
item s

 Possibilities for prediction function (item s):

 rcs = 1/k ∑d in D rds

 rcs = (∑d in D sim(c,d) rds)/(∑
d in D

sim(c,d))

 Other options?
 Many tricks possible…
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 Expensive step is finding k most similar 
customers
 O(|U|) 

 Too expensive to do at runtime
 Could pre-compute

 Naïve precomputation takes time     O(N|U|)
 Stay tuned for how to do it faster!

 Can use clustering, partitioning as 
alternatives, but quality degrades
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 So far: User-user collaborative filtering
 Another view
 For item s, find other similar items 
 Estimate rating for item based on ratings for 

similar items
 Can use same similarity metrics and prediction 

functions as in user-user model
 In practice, it has been observed that item-

item often works better than user-user
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 What do we recommend for Avatar?
 cos(Avatar, Matrix) =0.38
 cos(Avatar, Lotr) =0.0



 Works for any kind of item
 No feature selection needed

 Cold Start: 
 Need enough users in the system to find a match.

 Sparsity: 
 The user/ratings matrix is sparse. Hard to find users 

that have rated the same items.
 First Rater: 
 Cannot recommend an item that has not been 

previously rated.
 New items, Esoteric items

 Popularity Bias: 
 Cannot recommend items to someone with unique 

tastes. 
 Tends to recommend popular items.
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 Implement two or more different 
recommenders and combine predictions
 Perhaps using a linear model

 Add content-based methods to collaborative 
filtering
 item profiles for new item problem
 demographics to deal with new user problem
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 Compare predictions with known ratings
 Root-mean-square error (RMSE)
 Precision at top 10: % of those in top10
 Rating of top 10:  Average rating assigned to top 10
 Rank Correlation: Spearman’s, rs, between system’s 

and user’s complete rankings.

 Another approach: 0/1 model
 Coverage
 Number of items/users for which system can make predictions 

 Precision
 Accuracy of predictions 

 Receiver operating characteristic (ROC)
 Tradeoff curve between false positives and false negatives
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 Narrow focus on accuracy sometimes misses 
the point
 Prediction Diversity
 Prediction Context
 Order of predictions

 In practice, we care only to predict high 
ratings:
 RMSE might penalize a method that does well for 

high ratings and badly for others
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 Common problem that comes up in many 
settings

 Given a large number N of vectors in some 
high-dimensional space (M dimensions), find 
pairs of vectors that have high similarity
 e.g., user profiles, item profiles

 We already know how to do this!
 Near-neighbor search in high dimensions (LSH)
 Dimensionality reduction
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Overview of Coffee Varieties
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